1.复杂流量关系怎么展示?四步搞定桑基(附Python源码)
2.使用pyecharts最新版本绘制中国地图实例详解,个性化地图定制
3.Echart:入门可视化科研人必备
4.Pyecharts绘图教程(2)—— 绘制多种折线图(Line)参数说明+代码实战
5.pyecharts使å¾è¡¨å±
ä¸
6.Python游戏用Python 和 Pyglet 编写一个我的世界小游戏 | 附源码
复杂流量关系怎么展示?四步搞定桑基(附Python源码)
当面临复杂流量关系的可视化展示,桑基图无疑是一个高效的选择,尤其在Python编程中,只需简单四步即可实现。即使对代码不熟悉,网校php源码借助Python库也能轻松操作。 桑基图是一种强大的工具,常用于展示诸如人口流动(如跨国城市)、互联网用户行为(如产品页面浏览)或企业资金流动等复杂关系。其基本构造由节点、边和流量组成,边代表数据流,节点代表分类,线条宽度则表示流量大小,直观呈现数据分布与结构对比。 以下是制作桑基图的四个步骤:第一步,整理数据。将所有流量关系转化为“起点-终点-值”的二维表,无论关系层次多深,都应包含其中。
第二步,创建节点字典。收集所有独特的博客音乐插件源码节点(包括出发点和目标点),以字典形式存储,确保键值对为"{ 'name': '节点名'}",否则可能导致绘制空白图。
第三步,构建关系字典。将二维表中的每一行转换为字典,如{ 'source': 'A', 'target': 'B', 'value': .0},表示从节点A流向节点B的流量为。
最后,利用Python库,如pyecharts的Sankey方法绘制图。默认情况下,桑基图为横向,通过orient参数调整为竖向。比如,设置orient='vertical',并可能需要调整LabelOpts参数以优化标签显示,确保垂直方向的美观性。
一个垂直方向的桑基图示例将直观展示调整后的效果。使用pyecharts最新版本绘制中国地图实例详解,个性化地图定制
第一章:实例演示
这里提供一个具体的操作实例,展示如何使用 pyecharts 最新版本绘制中国地图,以及如何进行个性化地图定制。html ppt播放源码
在开始之前,请确保已经通过 pip install pyecharts 安装了 pyecharts 库。当前演示的版本为 1.9.1,新版本已无需单独安装地图。
我们将使用随机生成的数据来展示中国各省份的示例。
实例1:添加数据项,默认中国地图显示
首先,我们演示如何添加一组数据,运行后会生成一个 HTML 文件,通过打开文件即可查看生成的地图。
接下来,我们将演示如何添加两组数据,只需在之前的基础上调用 add() 函数即可,操作简便。
实例2:完整源码
为方便读者实践,我们提供了一段完整源码,直接运行即可。
第二章:常用配置项及参数解析
在使用 pyecharts 绘制地图时,有许多配置项和参数可以进行个性化定制。
配置项1:设置是否默认选中
默认情况下,地图会自动选中数据。可以通过添加 is_selected=False 参数来改变默认行为,这样地图就不会自动显示数据。python项目源码导入
配置项2:设置地图颜色类型是否分段显示
通过 visualmap_opts=opts.VisualMapOpts(max_=, is_piecewise=True) 可以使地图颜色根据数据范围分段显示。max_ 参数定义了数据的范围,is_piecewise=True 表示数据范围将被划分为多个段。
配置项3:缩放和平移配置
启用 is_roam 参数可以实现地图的缩放和平移功能。默认情况下,用户可以通过鼠标滚轮放大缩小地图,同时也可以通过鼠标拖动实现地图的平移。
配置项4:关闭图形标记
通过 is_map_symbol_show=False 参数可以关闭地图上的图形标记,这样地图上就不会显示任何点。
配置项5:关闭标签名称显示
使用 label_opts=opts.LabelOpts(is_show=False) 参数可以关闭标签名称的显示,使得地图上省份的名称不被展示。
配置项6:颜色设置
可以通过系列配置项的 color 参数为标签设置颜色,例如 color="blue" 将标签颜色设置为蓝色。同时,通过设置图元样式配置的 areaColor 和 borderColor 来调整区域颜色和边框颜色,其中 normal 和 emphasis 两种模式分别代表常规和强调样式下的颜色。
配置项7:地图画布初始化大小
通过 Map() 函数中的 init_opts 参数可以设定地图画布的初始大小,例如 Map(init_opts=opts.InitOpts(height="px", width="px"))。
通过以上配置,可以实现对地图的全面定制,满足不同需求。希望这些实例和配置解析能帮助您更好地使用 pyecharts 进行地图绘制与个性化定制。如果您觉得文章对您有所帮助,-125的源码反请给予支持。
Echart:入门可视化科研人必备
在参加一个数据分析竞赛时,发现研一师妹对R语言不太熟练,使用ggplot绘制图形学习成本较高。于是引入了Echart,一个强大的可视化工具,让绘制美观图形变得简单。Echart官网提供了大量实例,只需修改源代码数据即可得到所需的简约清新图表。以下是我们在报告中使用Echart绘制的部分图形。
对于Python用户,可以通过pyecharts库在Python环境中使用Echart。pyecharts官网提供了详细的使用教程和pyecharts-gallery,用于展示各种图表。无论是在本地环境还是Notebook环境中,甚至输出PNG用于科技论文发表,均能轻松实现。
对于R语言用户,echarts4r是一个不错的接口,提供了从入门到应用的详细教程。通过《统计之都》公众号的一篇推文了解更多信息。echarts4r让R语言用户也能享受到Echart的强大功能。安装方式和相关教程在参考文献中提供。
以下展示的是使用Echart绘制的一些可视化结果,效果良好。通过Echart,无论是初学者还是经验丰富的数据分析师,都能快速上手,绘制出高质量的图表,为数据分析和展示工作提供强大的支持。
参考资料包括Echart官网、pyecharts官网、pyecharts-gallery、echarts4r官网和相关教程链接。通过这些资源,用户可以深入了解并灵活运用Echart进行数据可视化。
Pyecharts绘图教程(2)—— 绘制多种折线图(Line)参数说明+代码实战
Pyecharts绘图教程(2)—— 绘制多种折线图(Line)参数详解及实战
在本期教程中,我们将深入探讨如何利用Pyecharts库绘制各种折线图,帮助零基础和进阶者掌握数据可视化的技巧。系列教程旨在提供实用指导,如有疑问或建议,欢迎随时联系我们的小编。1. 折线图介绍
折线图是呈现数据随时间变化趋势的有效工具,通过连接数据点展示上升、下降和波动,帮助理解数据规律。2. 代码配置
确保使用Pyecharts版本1.9.1
数据配置:通过add_xaxis和add_yaxis设置坐标轴数据
全局配置:set_global_opts控制全局样式,包括标题、图例等,详情将后续介绍
3. 实战示例
基础折线:is_smooth、is_step、is_connect_nones控制线条平滑、阶梯显示和空值处理
颜色设置:color控制线条颜色,注意颜色反转问题
标记点、图形、线样式、填充区域和标记区域的配置项
4. 源码实践
立即在线实践可视化代码:点击这里 完成本期内容后,不妨动手练习,如果你喜欢,别忘了点赞、收藏或分享给更多人。更多绘图教程请关注公众号:Python当打之年。pyecharts使å¾è¡¨å± ä¸
å¨ç½ä¸æ¾äºå¾å¤ä½¿ç¨pyechartsçæ¹æ³ççè½ä¸è½ä½¿çæçå¾è¡¨å± ä¸ï¼å¯æ没ææ¾å°ãåæ¥çäºçpyechartsç»çæºç ï¼æ¾å°äºçæhtmlç模æ¿æºç æ件ï¼å äºmarginçcsså¨éé¢å°±è¡äºã
æçpython使ç¨çæ¯anacondaï¼ä¿®æ¹æ件夹ä¸çengine.pyæ件ã
å¨éé¢æå ¥marginçï¼å次çæhtmlæ件就å¯ä»¥å¦ï¼ï¼ï¼
è§å¾å¥½çè¯ï¼è®°å¾æ¯æä¸ä¸å¦ï¼ï¼ï¼
Python游戏用Python 和 Pyglet 编写一个我的世界小游戏 | 附源码
想通过Python学习编程的朋友们,不妨关注一下我们的公众号Python日志,这里提供丰富的资源,定期分享Python相关的小知识,为你的编程之旅添砖加瓦。若你对附带源码的我的世界小游戏感兴趣,只需在公众号回复“我的世界”,即可获取。
为了实现这个小游戏,我们需要搭建相应的开发环境,具体包括Python版本(3.7.8)以及一些辅助模块,如requests、tqdm、pyfreeproxy和pyecharts等。同时,利用Python自带的模块,我们能够快速上手并进行游戏的开发。
游戏开发的步骤分为几个关键环节,首先是安装Python并将其添加到环境变量中,随后利用pip工具安装所有必要的模块,确保开发环境的完整性。
在实现游戏功能时,我们首先定义了游戏的玩法:通过ESC键释放鼠标并关闭窗口。接下来,我们开始构建游戏的核心——窗口类。尽管代码篇幅较长,但关键在于通过合理设计,实现游戏的基本交互逻辑,如移动、建筑创建与退出等。具体实现细节及完整代码,我们建议大家直接访问公众号Python日志,回复“我的世界”获取,以获得更直观的学习体验。
BUG解决Pyecharts 3D柱状图X轴显示不全问题
♋ 写在前头:今天用pyecharts绘制了一个3D柱状图,本想展示一下高级功能,却遭遇质疑。下面是“打脸现场”:
原本应有十个数据,却只显示了五个,这让人难以接受,尤其是强迫症患者。
♋第一步:既然遇到了问题,首先要做的是在网上搜索解决方案。我尝试了以下两种方法:
遗憾的是,这两种方法都无法解决3D作图中的问题,只能在2D作图中使用,这让我非常沮丧。
难道我就要放弃吗?不,我决定继续研究。
♋第二步:既然常规方法无效,我只能深入源码。首先,我查看了Bar3D的源码:
然而,似乎没有找到有价值的线索。于是,我决定查看Axis3DOpts的定义:
令我惊讶的是,我发现了一个熟悉的参数interval,这不是和2D作图中的解决方法一样吗?于是,我尝试将其加入3D作图中:
经过一番操作,奇迹出现了!问题得到了解决,我终于可以庆祝胜利了。
♋最后的最后:感谢大家的阅读,希望有缘,江湖再见。如果觉得有帮助,不妨点赞支持一下。