1.opencv Դ?源码? ?ϵ?
2.用网上下载的编译好的opencv 效率高吗,还是断点得自己编译一个最高效的
3.win10 cmake源码编译安装opencv(c++,qt)(解决ffmpeg下载失败导致opencv无法处理视频)
4.opencv cv::distanceTransform()距离变换论文与源码
5.OpenCV:Mat源码解读
6.opencvå32ä½å64ä½å
opencv Դ?? ?ϵ?
本文提供了一套简洁明了的OpenCV安装教程,旨在帮助开发者实现一次成功安装。源码首先,断点选择官方Raspbian-buster-full系统作为操作平台,源码并建议更换源至清华源,断点pb串口源码以确保下载过程顺利,源码避免遇到如GTK2.0下载失败等问题。断点对于远程操作需求,源码外接屏幕或使用VNC远程连接是断点可行方案,同时通过tee命令记录编译过程,源码以便在远程连接中断时仍能查看详细信息。断点
安装系统镜像,源码完成OpenCV安装后,断点生成的源码镜像文件大小仅4.G,压缩后为2.G,直接烧录至TF卡即可使用。该系统已预装VNC等必备软件,配置了静态IP,提供详尽的极客学院 源码使用指南,包括树莓派和Windows系统间的文件复制和传输方法。系统兼容树莓派4和3型号,对于有补充需求之处,将在文章末尾进行说明。
正式安装OpenCV,首先确保安装所需的依赖工具和图像、视频库。按照步骤逐一进行,包括安装构建必需工具、图像工具包、视频工具包、GTK2.0以及优化函数包。在编译OpenCV源码前,下载并解压OpenCV3.4.3及opencv_contrib3.4.3(选择版本时需确保二者版本号一致)。
采用直接下载或wget下载两种方法获取源码,解压后进入源码目录。创建release文件夹,用于存放cmake编译时产生的临时文件。设置cmake编译参数,绘图软件编写源码安装目录默认为/usr/local,确保参数正确配置,尤其是对于root用户下的cmake命令,需修改OPENCV_EXTRA_MODULES_PATH的值为绝对路径。
编译过程中,确认进度到达%,以验证安装成功。进行其他配置,包括设置库路径,以便于使用OpenCV库,也可选择不进行设置。配置opencv.conf和bash.bashrc文件,进行必要的参数添加,重启树莓派或重新登录用户后,测试OpenCV使用是否正常。
演示Python程序使用OpenCV画一条直线,确保Python编译器已安装,执行相关代码。系统镜像中额外提供远程连接和文件传输功能的新卡系统源码说明,包括使用VNC或Putty等工具远程控制树莓派的方法,以及如何在树莓派与Windows系统间进行复制粘贴,通过autocutsel软件简化操作流程。
用网上下载的编译好的opencv 效率高吗,还是得自己编译一个最高效的
一般而言网上下载的opencv效率高,因为opencv在开发的时候做了优化处理,当然如果你针对特殊应用的话,opencv多种组合才能实现的话,opencv的效率也会受影响。个人建议通过查看opencv的源码来了解相关技术实现,那你也可以自己去编写,提高能力。
win cmake源码编译安装opencv(c++,qt)(解决ffmpeg下载失败导致opencv无法处理视频)
要使用Qt与Windows上的OpenCV,当默认的msvc版本不满足需求时,需要通过源码编译安装,并配合cmake工具。以下是详细的步骤:
首先,下载OpenCV sources版本,同时确保已经安装了cmake编译工具,外汇ea软件源码这里推荐选择对应版本的MinGW版本。在Qt的mingw环境中,需将mingw的bin路径(例如:D:\Programs\Qt\Qt5..\Tools\mingw_\bin)添加到环境变量,验证配置成功可通过在cmd中输入gcc -v。
解压OpenCV到指定位置,创建一个build文件夹。使用cmake-gui,设置源码路径和build文件夹,配置为MinGW Makefiles。初次配置可能遇到问题,如ffmpeg下载失败,这时需要重命名ffmpeg.cmake为ffmpeg.txt,修改其中的下载地址为/。
在cmake-gui中,勾选with_qt和with_opengl,取消opencv_enable_allocator_stats和与python相关的选项。如果需要python支持,可以使用pip安装。配置完成后,再次点击configure并生成makefile,确保所有路径正确。
在build文件夹中,通过mingw-make -j(根据你的CPU核心数设置线程数,例如)开始编译,最后执行mingw-make install。安装后,别忘了将安装路径(如D:\Programs\opencv3.4.\build\install\x\mingw\bin)添加到系统环境变量。
通过这些步骤,你就可以在Qt环境中成功安装并使用OpenCV处理视频了,无需担心ffmpeg下载失败的问题。
opencv cv::distanceTransform()距离变换论文与源码
OpenCV的cv::distanceTransform()函数用于计算图像中所有点到最近‘0’点的距离,其应用广泛,例如在无人驾驶中,用于测量图像中最近障碍物的距离。它支持两种距离计算:L1和L2。当maskSize为DIST_MASK_PRECISE且distanceType为DIST_L2时,采用[]中的并行算法,借助TBB库。其他情况下,会使用[]算法。
简单来说,[]算法在年发表,而[]则更易于理解且适用于L2距离。距离变换定义了一个函数Df,它是输入函数f的欧氏距离变换,即对于每个点p,找到最近的q点,其距离加上f(q)值。
公式[公式]描述了经典的距离变换方法,它将每个网格位置与最近点P通过二值图像关联。在OpenCV的实现中,如/modules/imgproc/src/distransform.cpp的Line ,有一维和二维情况的处理方法。一维时,欧氏距离平方变换为[公式],二维则通过两次一维变换简化计算过程。
如果你对OpenCV的距离变换感兴趣,欢迎查看我的专栏并投稿,共同探讨OpenCV背后的原理和知识,共同进步。
OpenCV:Mat源码解读
OpenCV中的核心组件Mat是理解库运作的关键。通过深入阅读其源码,我们可以了解到Mat如何管理内存、与Sub-mat的关系,以及如何支持不同数据类型。本文旨在提供对Mat类的深入理解,帮助你掌握Mat的内存管理机制、数据结构设计,以及Mat中数据类型的表示方式。通过本文,你将对Mat的基本构成有清晰的认识,并理解内存分配的策略。
Mat类的实现类似于一个容器,主要构造和析构不同类型的Mat。Mat的内部数据存储在UMatData结构中,通过m.data指针访问。内存分配由UMatData和MatAllocator共同完成。Mat的shape由size(大小)和step(步长)组成,便于计算每个维度所需的内存空间。
UMatData结构隐藏了内存配置的细节,而MatAllocator根据不同设备实现底层不同的内存管理。以CPU的底层实现为例,这里仅展示其基本架构。理解了这些,Mat的基本构造就有了基础概念。
Mat的类型设计是其独特之处,用CV_{ bit}{ U/F/S}C{ n}表示,如CV_FC3表示3通道位浮点。其中depth部分决定基础类型,如CV_F。Mat的大小设计是根据不同类型进行优化的。在OpenCV 5.x版本中,depth用低5位表示,其余位用于通道数。
通过实际数据类型的例子,如通道的8U类型m0和其子Matm2,可以观察到CONT_FLAG和SUBMAT_FLAG的变化,以及对于非常用数据格式如CV_8UC()的性能影响。OpenCV对1、3、4通道数据有优化,而3通道的数据在某些情况下速度可能接近4通道。
最后,Mat的高效使用不仅依赖于基础计算,MatExpr起到了桥梁作用,它向上简化接口,向下连接加速指令。理解了Mat的这些特性,你将能够更有效地利用OpenCV的Mat进行数据处理。
opencvåä½åä½å
OpenCVæ¯æä¾æºç çï¼æ以ä»è¿ä¸ªè§åº¦æ¥è¯´ï¼æ¯ä¸åºåæä½çã
ä½æ¯ï¼OpenCVéé¢ä¹ä¼æä¸äºå·²ç»ç¼è¯å¥½äºçåºææ§è¡æ件ï¼é£ä¹è¿ä¸ªæ¯è¦åºåæä½çã