1.SPM 软件介绍
SPM 软件介绍
SPM数据挖掘预测分析软件,由美国Salford Systems公司开发,商源售其核心是码源码销先进的机器学习算法,旨在提供预测分析工具。意思软件主要模块包括广义路径追踪(GPS)算法、经销智能变量分组、商源售gms国际服源码自动化变量缺失值填补、码源码销逻辑回归算法、意思最小二乘线性回归模型等。经销
GPS算法通过机器学习方法建立大量候选线性模型,商源售并自动选择最优模型,码源码销显著提升模型效果。意思智能变量分组高度自动化地对变量进行智能分组,经销减少手动工作,商源售提升建模效率和模型性能。码源码销播吧直播源码自动化缺失值填补模块利用算法快速处理缺失值,包含均值、中位数、众数填补方式及利用预测模型进行个性化填补。
软件提供经典逻辑回归算法,结合TreeNet,快速建立高精度模型;最小二乘线性回归模型支持单一变量线性相关性测试,好玩的vb源码结合TreeNet快速开发精确回归模型。
SPM8优势显著,高精度,TreeNet是唯一由GBM发明人源代码开发而成,经过不断迭代优化,无需深入了解GBM内部算法,即可获得高精度模型。modbus.h 源码高纬度特征快速筛选能力,TreeNet是目前最快的GBM算法,适合高纬度快速变量筛选;GPS是最快速的正则化回归算法,支持广谱正则化路径搜索策略,作为快速衍生特征筛选工具。
用户界面友好,提供强大自动化建模功能,最全主图源码简化操作,无需专业背景即可轻松使用。SPM的自动化建模技术包括自动化模型优化和机器学习模型置信度检验。热点追踪功能适用于信用风险和反欺诈场景,利用CART调整PRIOR设置快速识别关注人群特征。聚类和异常点分析采用监督学习算法,给出解释性强的规则形式聚类;利用CART中的AUTOMATE UNSUPERVISED找到样本异常点,应用于反欺诈等场景。快速逻辑回归模型开发通过TreeNet变量筛选和Spline变形或Data Binning快速变量分组,提供高效模型。
SPM为客户提供价值,解决大数据人力资源问题,通过高度自动化、智能化使用方式降低建模人员门槛,无需编程、理论基础和经验,较短时间内建立专家级模型。高效分析技术解放建模人员于繁琐低效手动工作,显著减少数据预处理时间,提高分析效率。自动化模型优化和机器学习模型置信度检验提升建模效率。通过GPS和Data Binning快速逻辑回归模型开发,节约人力成本,将更多精力用于商业问题理解、数据源获取、新特征构建和策略设计等创意性工作。识别高风险客户,预测即将流失客户,实现更加精准的客户关系维护。SPM建立的机器学习模型通常性能优于经典统计技术建立的模型5%到%,作为模型性能对比的基准。
北京天演融智软件有限公司作为SPM软件在中国的授权经销商,提供优质的软件销售和培训服务。
2025-01-04 07:05
2025-01-04 07:00
2025-01-04 05:48
2025-01-04 05:45
2025-01-04 05:45
2025-01-04 05:11
2025-01-04 05:05
2025-01-04 05:00