1.一梦江湖台服源码
2.Matrix卡顿优化之IdleHandlerLagTracer源码分析
3.C语言实现高并发服务器上线程池原理(含源码)
4.STL 源码剖析:sort
5.20个Python3实战项目(附源码),掌闲掌阅拿走就用
6.PolarDB-X 源码解读(七):私有协议连接的源码源码一生(CN篇)
一梦江湖台服源码
下载地址://
类型:安卓游戏-角色扮演
版本:v.0
大小:.M
语言:中文
平台:安卓APK
推荐星级(评分):★★★★★
游戏标签: 江湖手游 一梦江湖 一梦江湖台服手游中不管是角色还是画面的设计都是十分的唯美细致的,丰富的掌闲掌阅剧情设计,超多的源码源码时装等你前来领取,招式武学等你前来学习,掌闲掌阅随时开站,源码源码游资实战源码在这超大的掌闲掌阅地图上冒险探索,游戏的源码源码玩法也多。
游戏介绍 一梦江湖是掌闲掌阅网易全新打造高自由度武侠rpg手游,拥有多张万平米的源码源码无缝大地图,玩家可施展4段大轻功,掌闲掌阅及水上轻功。源码源码游戏内不仅可自由捏脸,掌闲掌阅还能随心塑造角色身份和性格,源码源码枭雄,掌闲掌阅大侠,杀手,浪客…丰富玩法与江湖选择,拒绝一条龙!
一梦江湖台湾服攻略 非一条龙,百种玩法
每日可获取经验设置上限,不需要挂“一条龙”,丰富的游戏内容提供了高度可选择性。游山玩水掏鸡窝,抓马驯牛逛青楼……玩家不必为升级而去完成自己不喜欢的任务,休闲党、风景党亦可从容惬意地探索江湖世界。
市井百态,可攻略NPC
构建真实动态的江湖,百万字剧情人人血肉丰满,NPC具有各种情绪和不同AI,玩家行为可引起他们的反馈,也可直接冲撞甚至杀掉他们,一些NPC还可被攻略成为你的江湖好友,随时召唤、谈心喝酒。
极具沉浸感的真实江湖
多张万平方米无缝大地图,地图内没有任何空气墙,所有的可视点都可到达。可探索环境与万物共生:偷西瓜、搬水罐、生火取暖、吃瓜降暑、雨天打滑……解锁各种古代生活技能新姿势!
自由捏脸,千人千面
游戏可自由捏脸,真正千人千面!全新命格系统、奇遇、剧情分支与多结局,让玩家脱离固定养成线路。枭雄,大侠,杀手,浪客……你的一举一动均会塑造出独特的江湖人格,也会影响你的命运与遭遇。
游戏特色 1、山林归隐,世外桃源,自由搭建宅邸,享受田园生活
2、绝世神功出我辈,武学自创,万种动作分解糅合
3、一千零一种江湖梦,奇遇轻功,偷瓜抓牛,给你无限的可能
4、蝙蝠风云万骨枯,大型团队战,mikkel bang网站源码全新的破绽机制
一梦江湖台服玩法 全新情缘系统开启
从现在起,你可以悄悄关注喜欢的人,随时了解TA的动态;在触发特殊线索时,还会邂逅“有缘人”,感受紧张而浪漫的心跳体验。
美术效果重制启动
新门派场景已加载全新的美术效果,天空、植被、光照全面革新。此外,马匹、人物、外观、脸型等多个部分也已重制,未来,更多美术内容,将以全新的面貌迎接少侠们。
海量免费福利放出
每日签到,累积登录,基金重置,祈愿,闲逛,奇遇……轻松参与活动,就能收获大量永久绝版的挂件、时装、武器外观和珍稀道具,切莫错过。
全新太阴门派上线
?
驾驭纸偶,掌控厌胜之术,用铜镜迷惑对手的神秘门派-太阴,现已正式降临。据说,门派中有一个隐藏的试炼之地,有缘人方可踏入,一窥其独特的娑婆风貌。
总结而言,墨鱼下载是您寻找安卓游戏和角色扮演下载的理想之选。我们为您精选了一系列安卓游戏和角色扮演的相关内容,无论您是安卓游戏角色扮演的初学者还是专业人士,都能满足您的需求。在我们的下载站,您可以轻松找到最新的一梦江湖台服高速下载,享受安卓游戏角色扮演带来的无尽乐趣!我们提供详细的一梦江湖台服高速下载信息,包括功能介绍、用户评价以及官方下载链接// ,让您的下载过程更加轻松快捷!此外,我们还提供一系列与安卓游戏角色扮演相关的教程和资讯,帮助您更好地了解和使用这些产品。我们的团队时刻关注安卓游戏角色扮演的最新动态,为您提供最新的信息和下载链接。在墨鱼下载,我们致力于为您提供最好的安卓游戏角色扮演下载体验。我们相信,在我们的努力下,您一定能找到最适合您的安卓游戏角色扮演解决方案。快来体验我们的服务吧!/
Matrix卡顿优化之IdleHandlerLagTracer源码分析
IdleHandler是Android系统提供的一种机制,用于在消息队列空闲时执行任务,其任务优先级低于主线程,适用于实时性要求不高的任务。通常用于优化Android应用启动速度。然而,matrix卡顿优化中对IdleHandler进行监控的原因在于,IdleHandler属于主线程卡顿监控的关键环节。当IdleHandler中出现耗时任务执行,会明显导致主线程卡顿。
为了进行性能优化,pow 钱包 开发 源码matrix对IdleHandler进行监控变得必要。IdleHandler监控的关键在于在TracePlugin中进行初始化和调用。构造方法仅接收配置,包含IdleHandler监控开关。onStartTrace方法调用onAlive方法,初始化HandlerThread,创建IdleHandlerLagRunnable,并启动检测IdleHandler的执行。
IdleHandlerLagRunnable负责上报信息。detectIdleHandler方法通过反射获取mIdleHandlers列表,并通过MyArrayList实现hook点,监控IdleHandler的添加和移除。当消息队列添加IdleHandler时,MyArrayList的add方法将IdleHandler包装为MyIdleHandler存入,拦截queueIdle方法调用。
MyIdleHandler继承自IdleHandler,重写queueIdle方法,监控IdleHandler执行过程。当IdleHandler执行时,idleHandlerLagHandler发送延时消息到子线程。若2s内未完成,收集信息上报,发现IdleHandler导致的卡顿问题。
IdleHandlerLagTracer通过hook替换消息队列的IdleHandlers集合,拦截添加和移除逻辑,为原IdleHandler添加代理,监控queueIdle方法执行。超时未执行完成则收集信息上报,有效发现IdleHandler导致的卡顿。
性能优化是Android开发中重要的一环,掌握IdleHandler监控机制有助于更细致地进行性能调优。此外,推荐关注Android学习资源,涵盖性能优化、框架底层原理、车载开发、逆向安全、音视频技术、Jetpack全家桶、OkHttp源码解析、Kotlin、Gradle、Flutter等多领域内容,助力深入学习和提升技术能力。
Android性能优化、框架底层原理、车载开发、逆向安全、音视频技术、Jetpack全家桶、OkHttp源码解析、Kotlin、Gradle、Flutter等学习资源,助力深化技术理解与应用。
C语言实现高并发服务器上线程池原理(含源码)
在高并发服务器场景中,线程池作为一种高效的多线程处理策略,旨在有效利用资源。其工作流程通常包括接收消息、分类、创建线程、传递任务、线程执行和任务完成。对于小型局域网,这种方法足够,但在广域网或大型局域网中,频繁的请求可能导致线程频繁创建和销毁,这在内存资源有限的嵌入式服务器中尤为关键。
因此,彩票直播网源码线程池技术应运而生,通过复用线程,一个线程可以处理不同任务,避免了频繁创建和销毁的开销。理解线程池的结构十分重要,它由任务队列、线程集合(包括工作线程、空闲线程和待销毁线程)和管理者线程组成。任务队列负责存储待处理任务,以先进先出的方式组织;线程集合则负责执行任务;管理者线程则负责监控线程状态,动态调整线程数量以维持最佳性能。
线程池的核心结构包括一个threadpool_t结构体,其中包含线程池状态、任务队列信息,以及用于同步操作的互斥锁。任务结构中包含处理函数的指针和相关参数。在使用时,需将分类后的处理函数与参数打包为任务,并放入队列,等待线程执行。
为了深入学习,你可以参考一些资源,例如加入Linux内核技术交流群,获取学习资料和书籍推荐。而想要在嵌入式开发领域进入互联网大厂,理解并掌握线程池的原理和实现是必不可少的。内核学习网站也是个不错的资源来源。
STL 源码剖析:sort
我大抵是太闲了。
更好的阅读体验。
sort 作为最常用的 STL 之一,大多数人对于其了解仅限于快速排序。
听说其内部实现还包括插入排序和堆排序,于是很好奇,决定通过源代码一探究竟。
个人习惯使用 DEV-C++,不知道其他的编译器会不会有所不同,现阶段也不是很关心。
这个文章并不是析完之后的总结,而是边剖边写。不免有个人的猜测。而且由于本人英语极其差劲,大抵会犯一些憨憨错误。
源码部分sort
首先,在 Dev 中输入以下代码:
然后按住 ctrl,鼠标左键sort,就可以跳转到头文件 stl_algo.h,并可以看到这个:
注释、模板和函数参数不再解释,我们需要关注的是函数体。
但是,中间那一段没看懂……
点进去,是一堆看不懂的#define。
查了一下,感觉这东西不是我这个菜鸡能掌握的。
有兴趣的 戳这里。
那么接下来,就应该去到函数__sort 来一探究竟了。
__sort
通过同样的方法,继续在stl_algo.h 里找到 __sort 的源代码。
同样,只看函数体部分。
一般来说,sort(a,a+n) 是对于区间 [公式] 进行排序,所以排序的前提是 __first != __last。
如果能排序,那么通过两种方式:
一部分一部分的看。
__introsort_loop
最上边注释的翻译:这是排序例程的帮助程序函数。
在传参时,除了首尾迭代器和排序方式,预约cms系统源码还传了一个std::__lg(__last - __first) * 2,对应 __depth_limit。
while 表示,当区间长度太小时,不进行排序。
_S_threshold 是一个由 enum 定义的数,好像是叫枚举类型。
当__depth_limit 为 [公式] 时,也就是迭代次数较多时,不使用 __introsort_loop,而是使用 __partial_sort(部分排序)。
然后通过__unguarded_partition_pivot,得到一个奇怪的位置(这个函数的翻译是无防护分区枢轴)。
然后递归处理这个奇怪的位置到末位置,再更新末位置,继续循环。
鉴于本人比较好奇无防护分区枢轴是什么,于是先看的__unguarded_partition_pivot。
__unguarded_partition_pivot
首先,找到了中间点。
然后__move_median_to_first(把中间的数移到第一位)。
最后返回__unguarded_partition。
__move_median_to_first
这里的中间数,并不是数列的中间数,而是三个迭代器的中间值。
这三个迭代器分别指向:第二个数,中间的数,最后一个数。
至于为什么取中间的数,暂时还不是很清楚。
`__unguarded_partition`
传参传来的序列第二位到最后。
看着看着,我好像悟了。
这里应该就是实现快速排序的部分。
上边的__move_median_to_first 是为了防止特殊数据卡 [公式] 。经过移动的话,第一个位置就不会是最小值,放在左半序列的数也就不会为 [公式] 。
这样的话,__unguarded_partition 就是快排的主体。
那么,接下来该去看部分排序了。
__partial_sort
这里浅显的理解为堆排序,至于具体实现,在stl_heap.h 里,不属于我们的讨论范围。
(绝对不是因为我懒。)
这样的话,__introsort_loop 就结束了。下一步就要回到 __sort。
__final_insertion_sort
其中某常量为enum { _S_threshold = };。
其中实现的函数有两个:
__insertion_sort
其中的__comp 依然按照默认排序方式 < 来理解。
_GLIBCXX_MOVE_BACKWARD3
进入到_GLIBCXX_MOVE_BACKWARD3,是一个神奇的 #define:
其上就是move_backward:
上边的注释翻译为:
__unguarded_linear_insert
翻译为“无防护线性插入”,应该是指直接插入吧。
当__last 的值比前边元素的值小的时候,就一直进行交换,最后把 __last 放到对应的位置。
__unguarded_insertion_sort
就是直接对区间的每个元素进行插入。
总结
到这里,sort 的源代码就剖完了(除了堆的那部分)。
虽然没怎么看懂,但也理解了,sort 的源码是在快排的基础上,通过堆排序和插入排序来维护时间复杂度的稳定,不至于退化为 [公式] 。
鬼知道我写这么多是为了干嘛……
个Python3实战项目(附源码),拿走就用
理解编程并不仅仅是阅读代码,正如读书需要实践理解一样,只有通过动手实践,如修改代码、观察变化,才能真正掌握。以下是一些高效学习Python3源代码的步骤:首先,运行程序并观察其表现,理解其基本运行逻辑。
接着,通过断点调试,跟踪源码执行流程,关注函数调用和堆栈结构。
绘制类图和流程图,记录重要类及其关系,有助于后续理解和记忆。
遇到不理解的部分,记录为问题,并尝试通过撰写笔记或文章来逐步解决。
这个过程需要不断重复和实践,以巩固学习效果。
对于Python3实战项目的爱好者,这里有个精心整理的项目源码,包括:AI智能联系人管理系统,能自动识别名片信息,也支持手动输入。
Excel数据分析师,功能全面的工具。
Word助手,提升文档处理效率。
火车票分析助手,方便查询和分析。
甜橙音乐网,通过命令启动,可在本地服务器浏览。
微信机器人,包含笑话、天气和字符反串功能,需要微信公众号和内网穿透工具。
智能停车场车牌识别计费系统,需联网并配置百度AI Key。
毕业生信息审核系统,工资计算系统,以及轨道交通客流预测系统,深入数据分析。
驾驶员疲劳检测系统,进销存管理系统,股票系统,全用Python实现,结构清晰。
AI闲聊机器人对话系统,结合图灵和天气API。
脉象识别系统,商品销售数据分析可视化(含爬虫)。
天然气产气量预测,自动化高频基金交易,以及资产管理系统。
动物机器人桌面控制系统,提供了丰富的实践机会。
以上资源可供初学者和进阶者参考,无论做项目还是学术研究都非常实用。下载链接已打包好,希望能对你的学习之路有所帮助。PolarDB-X 源码解读(七):私有协议连接的一生(CN篇)
通过前文的介绍,大家基本了解了一条SQL在polardbx-sql中的解析和执行流程。由于polardbx-sql是无状态的计算节点,真正数据需要从存储节点传输到计算节点,这部分工作由私有协议完成。本文将详细介绍从发送请求到存储节点,接收返回数据的完整流程,重点在于私有协议连接的生命周期和关键代码解析。
概述
为了提高数据节点本地计算能力,同时减少网络数据传输量,计算节点会尽可能下推计算内容。一个逻辑表可能需要多个物理分片,因此计算节点与存储节点的请求会话数量会随着分片数增加而增加。传统MySQL协议+连接池架构已不能满足PolarDB-X的需求,因此私有协议在这一需求场景下应运而生。
如图所示,私有协议采用连接与会话分离的RPC协议设计理念,支持多个会话在同一个TCP通道中并行运行,具备流控机制、全双工响应式工作模式和高吞吐、可扩展等特性。
更多关于私有协议解决上述问题的设计详情,可以参考《PolarDB-X私有协议设计》一文。本文主要从代码层面详细描述私有协议的工作流程。
我们将从计算节点和存储节点两个角度完整解析私有协议连接的生命周期。篇幅限制,本文仅关注计算节点上私有协议的处理,存储节点部分将在后续文章中详细说明。
计算节点
计算节点作为私有协议的客户端,负责发送下推请求,并接收返回的数据。
网络层框架
PolarDB-X私有协议网络层采用定制化Reactor框架实现,基于Java的NIO,改进自polardbx-sql中的Reactor框架。网络层初始化时,设置CPU核心数的2倍(上限为)作为NIOProcessor,每个Reactor使用独立的堆外内存池作为收发包缓冲,总缓冲内存大小限制为堆内存大小的%。
NIO接收的包直接调用注册的处理函数,发送数据仅写入send buf,网络写入由单独线程完成。线程优先写入TCP send buf,当无法写入时,注册OP_WRITE事件等待可写后再写入剩余内容。
数据包的编码和解码在NIOClient中实现。为实现最佳性能,解包流程直接在堆外内存上进行,使用protobuf对流直接解析,将结果放入堆内。堆外内存被切分为KB chunk,每个Reactor独占一个chunk,连续解析和复用,最大化接收、解析效率。对于特大包,额外构造堆内大buffer接收和解析,回退标志在定时任务中重置,连续s无超大包时释放堆内内存,恢复高性能堆外KB buffer接收。
请求发送集成在NIOClient中,writer优先尝试写入发送缓冲队列尾部的buffer,不足时新申请buffer填充并追加到队尾。buffer来自预分配的堆外缓冲池,超过chunk大小时分配堆内buf进行序列化。
同时,NIOClient负责TCP连接的建立和断开资源释放,作为独立的底层网络资源管理实现。
连接及会话
网络层之后,我们聚焦连接与会话分离的具体实现。通过剥离连接及收发包的具体实现,连接和会话的管理变得更加清晰简洁。
首先,一个TCP连接的逻辑抽象结构在XClient中实现,为避免误解,取名为client与JDBC中的Connection区别。该类管理TCP连接和并行运行的会话,负责TCP完整生命周期的管理、认证鉴权,并维护公共信息。其中,workingSessionMap记录了连接上并行运行的所有会话映射关系,可快速通过会话ID找到对应的会话抽象结构XSession。
XSession提供了所有会话相关的请求函数和信息存储,包括执行计划请求、SQL查询请求、SQL更新请求、TSO请求、会话变量处理、数据包处理及异步唤醒等。
连接池及全局单例管理器
为了提高性能,TCP连接和会话的复用必不可少。由于连接和会话的解绑,连接池不仅缓存了到计算节点的TCP连接,也缓存了到计算节点的会话。
XClientPool管理到一个存储节点的连接池,通过IP,端口,用户名三元组唯一确定目标存储节点,同时存储该节点的全部TCP连接(XClient)和建立的会话(XSession)。
XClientPool实现存储节点会话获取,对应JDBC接口中的getConnection,同时实现连接和会话生命周期管理、连接探活、会话预分配等功能。实现单个存储节点连接池后,XConnectionManager维护目标存储节点三元组到实例连接池的映射,管理定时任务线程池,实现定时探活、会话&连接最长生命控制以及连接池预热等功能。
JDBC兼容层
新的SQL协议层对上层使用者要求较高,为了提高开发效率,私有协议提供兼容JDBC的使用方法,实现从JDBC平滑切换至私有协议,并支持协议热切换。
JDBC兼容层代码目录在compatible目录下,Connection继承在XConnection文件中。提供包括DataSource、Connection、Statement、PreparedStatement、ResultSet、ResultSetMetaData在内的大部分常用接口函数实现,不支持的函数会明确抛出异常避免误用。
整体关系
至此,私有协议计算节点端的大部分结构已说明完成。给出一个整体的关系图。
私有协议连接的一生(CN视角)
了解了私有协议各层实现后,我们以发到存储节点的请求为例,完整梳理执行流程。绕开计算节点复杂流程,直接运行代码示例(注:需将com.alibaba.polardbx.rpc.XConfig#GALAXY_X_PROTOCOL设置为true)。
直接运行playground看到预期的select 1的结果。接下来,我们深入跟踪说明。
数据源初始化
要使用私有协议,需要初始化对应存储节点的XDataSource。构造过程中,XDataSource会到XConnectionManager注册新的实例连接池,已存在的连接池引用计数加一。
获取Connection
当需要执行查询时,首先获取会话。无论是显式开启事务还是使用auto commit事务,会话都是执行请求的最小上下文。通过XDataSource的getConnection方法获取到对应存储节点的会话。XDataSource根据存储的IP,端口,用户名三元组查找到XConnectionManager中的连接池,在最高并发检查后,会话获取逻辑在XClientPool实现。首先尝试在空闲会话池中拿会话,通过重置检查和初始化后返回给调用者。大部分场景下,ConcurrentLinkedQueue提供较好的并发性能。
在代码场景下,数据源刚新建,后台定时任务未运行,流程进入连接创建流程。会有一把大锁锁住连接池,在TCP连接未达上限且没有超时的情况下,快速新建一个XClient占坑。若超限,则进入busy waiting循环。真正的TCP connect(waitChannel)在锁外被调用,首先client以阻塞模式带超时方式connect,然后切换为非阻塞模式,round robin策略注册到NIOProcesser上,返回时,TCP连接已建立。
为了兼顾安全和性能,连接鉴权在TCP建连后只用做一次,会话创建不需要鉴权。鉴权在initClient中完成,发送SESS_AUTHENTICATE_START_VALUE包,后续校验由回调完成。认证采用标准的MySQL认证流程,server端返回challenge值,库名、用户名和加盐hash后的密码返回给MySQL即可完成认证。
至此,到存储节点的TCP连接已建立,创建会话是一个异步流程。在创建新XClient时,XConnection已new好,通过下断点跟进去可看到newXSession流程,分配session id,设置状态为init,将XSession绑定到XConnection上。
最后,XConnection经过初始化(重置auto commit状态)、重置默认DB、默认字符集(lazy操作)和统计信息记录,返回给用户使用。
发送查询请求
拿到初始化好的兼容JDBC的Connection,为了简化流程,直接调用XConnection中的execQuery。XConnection的execQuery包装了XSession的execQuery,执行前执行了设置流式模式。
首先记录调用信息进行统计,进入关键的initForRequest流程。XSession初始化流程lazy,仅分配session id,设置状态为Init,真正创建session时发送SESS_NEW给server,绑定新session和session id。如果session已复用,则状态为Ready。
执行字符集更改的lazy操作,session可能在其他请求中切换字符集,根据目标字符集和当前字符集对比,决定是否发送额外的字符集更改请求。
经过一系列变量设置、lazy DB设置和protobuf包构造,请求发送到存储节点执行。发送后,同步生成XResult负责结果解析,同时XResult按照请求顺序依次拉链表,确保结果与请求一一对应。
请求流水线结构如下图所示,处理完成前序请求后,才能解析后续结果。
接收结果集
请求已发送到存储节点执行,拿到XResult,通过XResult收集查询结果集。XResult与发送请求一一对应,存储节点处理也是在会话上排队进行,不会影响流水线上其他请求的返回,保证流水线正常工作。
首先,查看结果集处理的状态机,主要状态包括获取元数据、获取数据行、获取额外信息等,顺序固定,根据请求类型,部分环节可能被省略。报错处理贯穿整个状态机,任何报错信息都会导致状态机进入错误处理环节。
对于非流式数据读取,请求结束时主动调用finishBlockMode将所有数据读出并缓存到rows中。对于流式执行的情况,结果集状态机消费数据包队列由XResult的next函数推动,内部函数internalFetchOneObject递归调用前序XResult,消费前序请求结果,从数据包队列中消费并推动状态机流转。
对于查询,首先收到RESULTSET_COLUMN_META_DATA包,表示返回数据列定义,一个包表示一列。元数据包后,收到包含数据行的RESULTSET_ROW包,一个包对应一行。数据行传输完成后,server端发送RESULTSET_FETCH_DONE标示数据发送完成。请求结束前,NOTICE包用于告知客户端rows affected等信息。最后,SQL_STMT_EXECUTE_OK包标示请求结束。
至此,完整请求处理完成,控制台应显示查询结果。
总结
本文详细描述了私有协议连接流程中的关键点和关键数据结构,相信通过本文描述,大家掌握了私有协议连接流程的基本点,在调试和修改使用中能够更加得心应手。虽然本文篇幅较长,但实际使用中涉及更多高级特性的使用,如多请求流水线、流控、执行计划传输、chunk结果集传输等。通过本文,我们对私有协议连接流程有了深入理解,为在实际场景中应用提供坚实基础。