【源码添加aidl文件报错】【近邻app源码】【波波棋牌源码】hive源码
1.安全方向开源项目
2.Hadoop3.3.5集成Hive4+Tez-0.10.2+iceberg踩坑过程
3.Flink深入浅出:JDBC Connector源码分析
4.spark sql源码系列 | with as 语句真的源码会把查询的数据存内存嘛?
安全方向开源项目
以下是一些在安全领域备受关注的开源项目,它们为安全事件响应提供强大支持和解决方案: 首先,源码ShoMon v2.0是源码一款专为TheHive设计的Golang开发工具,它旨在整合The源码Hive与Shodan的监控功能。The源码Hive是一个强大的四合一开源平台,包含The源码源码添加aidl文件报错Hive本身、Cortex、源码The源码Hive4py(Python接口)和MISP,旨在简化安全事件的源码快速调查和响应过程,特别适合soc、源码csirt、源码cert等信息安全工作者使用。源码 其次,源码Velociraptor是源码一个独特的开源平台,专注于端点监测、源码数字取证和网络响应,为用户提供高级的网络安全监控和应对能力。 对于开源网络安全管理,OpenEDR是近邻app源码一个源代码公开的平台,允许研究人员共同参与产品和服务的开发。它不仅具备全面的终端安全响应系统(EDR)功能,而且以其复杂而高效的代码库著称,社区的贡献使其不断进化。 最后,flexiwan open SASE的roadmap展示了其未来规划,虽然具体细节未在文中详述,但可以预见它将在安全即服务(SASE)领域提供灵活且全面的解决方案。 这些开源项目展示了安全领域不断创新和合作的力量,为安全专业人士提供了强大的工具和资源,以应对日益复杂的网络安全挑战。Hadoop3.3.5集成Hive4+Tez-0..2+iceberg踩坑过程
集成Hadoop 3.3.5与Hive 4.0.0-beta-1、Tez 0..2和Iceberg的过程中,尽管资料匮乏且充满挑战,但通过仔细研究和实践,最终成功实现了。以下是关键步骤的总结:前置准备
Hadoop 3.3.5:由于Hive依赖Hadoop,确保已安装并配置。波波棋牌源码
Tez 0..2:作为Hive的计算引擎,需要先下载(Apache TEZ Releases)并可能因版本差异手动编译以适应Hadoop 3.3.5。
源码编译与配置
从release-0..2下载Tez源码,注意其依赖的Protocol Buffers 2.5.0。
修改pom.xml,调整Hadoop版本和protobuf路径,同时配置Maven仓库。
编译时,可以跳过tez-ui和tez-ext-service-tests以节省时间。
安装与配置
将编译后的Tez包上传至HDFS,并在Hadoop和Hive客户端配置tez-site.xml和环境变量。
Hive集成
Hive 4.0.0-beta-1:提供SQL查询和数据分析,已集成Iceberg 1.3无需额外配置。
下载Hive 4.0.0的稳定版本,解压并配置环境变量。
配置Hive-site.xml,包括元数据存储选择和驱动文件放置。
初始化Hive元数据并管理Hive服务。小米导航源码
使用Hive创建数据库、表,以及支持Iceberg的分区表。
参考资源
详尽教程:hive4.0.0 + hadoop3.3.4 集群安装
Tez 安装和部署说明
Hive 官方文档
Hadoop 3.3.5 集群设置
Flink深入浅出:JDBC Connector源码分析
大数据开发中,数据分析与报表制作是日常工作中最常遇到的任务。通常,我们通过读取Hive数据来进行计算,并将结果保存到数据库中,然后通过前端读取数据库来进行报表展示。然而,使用FlinkSQL可以简化这一过程,通过一个SQL语句即可完成整个ETL流程。
在Flink中,读取Hive数据并将数据写入数据库是常见的需求。本文将重点讲解数据如何写入数据库的过程,包括刷写数据库的机制和原理。
以下是本文将讲解的几个部分,以解答在使用过程中可能产生的齐聚影视源码疑问:
1. 表的定义
2. 定义的表如何找到具体的实现类(如何自定义第三方sink)
3. 写入数据的机制原理
(本篇基于1..0源码整理而成)
1. 表的定义
Flink官网提供了SQL中定义表的示例,以下以oracle为例:
定义好这样的表后,就可以使用insert into student执行插入操作了。接下来,我们将探讨其中的技术细节。
2. 如何找到实现类
实际上,这一过程涉及到之前分享过的SPI(服务提供者接口),即DriverManager去寻找Driver的过程。在Flink SQL执行时,会通过translate方法将SQL语句转换为对应的Operation,例如insert into xxx中的xxx会转换为CatalogSinkModifyOperation。这个操作会获取表的信息,从而得到Table对象。如果这个Table对象是CatalogTable,则会进入TableFactoryService.find()方法找到对应的实现类。
寻找实现类的过程就是SPI的过程。即通过查找路径下所有TableFactory.class的实现类,加载到内存中。这个SPI的定义位于resources下面的META-INFO下,定义接口以及实现类。
加载到内存后,首先判断是否是TableFactory的实现类,然后检查必要的参数是否满足(如果不满足会抛出异常,很多人在第一次使用Flink SQL注册表时,都会遇到NoMatchingTableFactoryException异常,其实都是因为配置的属性不全或者Jar报不满足找不到对应的TableFactory实现类造成的)。
找到对应的实现类后,调用对应的createTableSink方法就能创建具体的实现类了。
3. 工厂模式+创建者模式,创建TableSink
JDBCTableSourceSinkFactory是JDBC表的具体实现工厂,它实现了stream的sinkfactory。在1..0版本中,它不能在batch模式下使用,但在1.版本中据说会支持。这个类使用了经典的工厂模式,其中createStreamTableSink负责创建真正的Table,基于创建者模式构建JDBCUpsertTableSink。
创建出TableSink之后,就可以使用Flink API,基于DataStream创建一个Sink,并配置对应的并行度。
4. 消费数据写入数据库
在消费数据的过程中,底层基于PreparedStatement进行批量提交。需要注意的是提交的时机和机制。
控制刷写触发的最大数量 'connector.write.flush.max-rows' = ''
控制定时刷写的时间 'connector.write.flush.interval' = '2s'
这两个条件先到先触发,这两个参数都是可以通过with()属性配置的。
JDBCUpsertFunction很简单,主要的工作是包装对应的Format,执行它的open和invoke方法。其中open负责开启连接,invoke方法负责消费每条数据提交。
接下来,我们来看看关键的format.open()方法:
接下来就是消费数据,执行提交了
AppendWriter很简单,只是对PreparedStatement的封装而已
5. 总结
通过研究代码,我们应该了解了以下关键问题:
1. JDBC Sink执行的机制,比如依赖哪些包?(flink-jdbc.jar,这个包提供了JDBCTableSinkFactory的实现)
2. 如何找到对应的实现?基于SPI服务发现,扫描接口实现类,通过属性过滤,最终确定对应的实现类。
3. 底层如何提交记录?目前只支持append模式,底层基于PreparedStatement的addbatch+executeBatch批量提交
4. 数据写入数据库的时机和机制?一方面定时任务定时刷新,另一方面数量超过限制也会触发刷新。
更多Flink内容参考:
spark sql源码系列 | with as 语句真的会把查询的数据存内存嘛?
在探讨 Spark SQL 中 with...as 语句是否真的会把查询的数据存入内存之前,我们需要理清几个关键点。首先,网上诸多博客常常提及 with...as 语句会将数据存放于内存中,来提升性能。那么,实际情况究竟如何呢?
让我们以 hive-sql 的视角来解答这一问题。在 hive 中,有一个名为 `hive.optimize.cte.materialize.threshold` 的参数。默认情况下,其值为 -1,代表关闭。当值大于 0 时(如设置为 2),with...as 语句生成的表将在被引用次数达到设定值后物化,从而确保 with...as 语句仅执行一次,进而提高效率。
接下来,我们通过具体测试来验证上述结论。在不调整该参数的情况下,执行计划显示 test 表被读取了两次。此时,我们将参数调整为 `set hive.optimize.cte.materialize.threshold=1`,执行计划显示了 test 表被物化的情况,表明查询结果已被缓存。
转而观察 Spark SQL 端,我们并未发现相关优化参数。Spark 对 with...as 的操作相对较少,在源码层面,通过获取元数据时所做的参数判断(如阈值与 cte 引用次数),我们可以发现 Spark 在这个逻辑上并未提供明确的优化机制,来专门针对 with...as 语句进行高效管理。
综上所述,通过与 hive-sql 的对比以及深入源码分析,我们得出了 with...as 语句在 Spark SQL 中是否把数据存入内存的结论,答案并不是绝对的。关键在于是否通过参数调整来物化结果,以及 Spark 在自身框架层面并未提供特定优化策略来针对 with...as 语句进行内存管理。因此,正确使用 with...as 语句并结合具体业务场景,灵活调整优化参数策略,是实现性能提升的关键。