1.������� Դ��
2.Java并发编程笔记之LinkedBlockingQueue源码探究
3.Java并发系列 | Semaphore源码分析
4.初学Python,并发编程并发编程有哪些Pythonic的源码源码源码推荐阅读
5.Java并发源码concurrent包
6.Go并åç¼ç¨ï¼goroutineï¼channelåsync详解
������� Դ��
深入学习ConcurrentLinkedQueue类,了解它作为非阻塞队列实现,并发编程并发编程采用链表形式构建的源码源码容器。
ConcurrentLinkedQueue类遵循非阻塞算法,并发编程并发编程通过原子指令CAS(Compare and Swap)取代同步阻塞锁,源码源码支付前端html源码以确保在并发访问下数据的并发编程并发编程一致性,并显著提升同步性能。源码源码根据Amdahl定律,并发编程并发编程最小化串行代码的源码源码粒度是提升并发性能的关键,ConcurrentLinkedQueue类的并发编程并发编程实现正是如此。它不严格保证链表头尾的源码源码一致性,而是并发编程并发编程通过CAS操作来确保新节点的插入和头尾节点的更新,实现高效并发。源码源码
在非阻塞队列的并发编程并发编程操作中,通常需要原子化执行的两个步骤被分离,即插入新节点的入队和出队操作,与头尾节点的更新并非同步。这减少了需要原子更新的值范围,仅涉及唯一的变量,从而提升了非阻塞队列操作的性能,这也是Amdahl定律的体现。
ConcurrentLinkedQueue类的源代码中,节点类Node实现了这一设计,其item和next域被声明为普通的volatile类型,并使用AtomicReferenceFieldUpdater来更新。通过这种方式,能够实现高效、并发的节点操作。
节点类型被分为有效节点(item不为null)、无效节点(item为null)和已删除节点(通过next链接到自身),其中,头节点是队列中的第一个有效节点,而尾节点是next为null的节点,注意这不一定是tail指向的节点。
队列的初始化通过创建一个head和tail共同指向,item及next都为null的初始队列来实现。
入队操作涉及将新节点插入到尾节点的后面,通过tail找到尾节点执行插入操作。如果插入不成功,会继续向后推进查找。struts2h源码这一过程确保了高效并发的实现。
出队操作则涉及从头节点开始,循环查找下一个节点,直到找到满足条件的节点为止。一旦找到满足条件的节点,则更新头节点,并返回该节点的item值。
当遍历过程已越过一个节点时,会寻找下一个节点。如果head的next等于head,则意味着到达了哨兵节点,此时下一节点从head重新开始查找。
综上所述,ConcurrentLinkedQueue类通过非阻塞算法和高效的设计,提供了一个高性能的并发队列实现,适用于需要高并发访问场景的应用。
Java并发编程笔记之LinkedBlockingQueue源码探究
LinkedBlockingQueue 是基于单向链表实现的一种阻塞队列,其内部包含两个节点用于存放队列的首尾,并维护了一个表示元素个数的原子变量 count。同时,它利用了两个 ReentrantLock 实例(takeLock 和 putLock)来保证元素的原子性入队与出队操作。此外,notEmpty 和 notFull 两个信号量与条件队列用于实现阻塞操作,使得生产者和消费者模型得以实现。
LinkedBlockingQueue 的实现主要依赖于其内部锁机制和信号量管理。构造函数默认容量为最大整数值,用户可自定义容量大小。offer 方法用于尝试将元素添加至队列尾部,若队列未满则成功,返回 true,反之返回 false。若元素为 null,则抛出 NullPointerException。put 方法尝试将元素添加至队列尾部,并阻塞当前线程直至队列有空位,若被中断则抛出 InterruptedException。通过使用 putLock 锁,确保了元素的原子性添加以及元素计数的原子性更新。
在实现细节上,offer 方法通过在获取 putLock 的缓冲区透视源码同时检查队列是否已满,避免了不必要的元素添加。若队列未满,则执行入队操作并更新计数器,同时考虑唤醒等待队列未满的线程。此过程中,通过 notFull 信号量与条件队列协调线程间等待与唤醒。
put 方法则在获取 putLock 后立即检查队列是否满,若满则阻塞当前线程至 notFull 信号量被唤醒。在入队后,更新计数器,并考虑唤醒等待队列未满的线程,同样通过 notFull 信号量实现。
poll 方法用于从队列头部获取并移除元素,若队列为空则返回 null。此方法通过获取 takeLock 锁,保证了在检查队列是否为空和执行出队操作之间的原子性。在出队后,计数器递减,并考虑激活因调用 poll 或 take 方法而被阻塞的线程。
peek 方法类似,但不移除队列头部元素,返回 null 若队列为空。此方法也通过获取 takeLock 锁来保证操作的原子性。
take 方法用于阻塞获取队列头部元素并移除,若队列为空则阻塞当前线程直至队列不为空。此方法与 put 方法类似,通过 notEmpty 信号量与条件队列协调线程间的等待与唤醒。
remove 方法用于移除并返回指定元素,若存在则返回 true,否则返回 false。此方法通过双重加锁机制(fullyLock 和 fullyUnlock)来确保元素移除操作的原子性。
size 方法用于返回当前队列中的元素数量,通过 count.get() 直接获取,确保了操作的准确性。
综上所述,LinkedBlockingQueue 通过其独特的锁机制和信号量管理,实现了高效、线程安全的阻塞队列操作,适用于生产者-消费者模型等场景。
Java并发系列 | Semaphore源码分析
在Java并发编程中,蓝雨影院php源码Semaphore(信号量)是AQS共享模式的实用工具,它能够控制多个线程对共享资源的并发访问,实现流量控制。Semaphore的核心概念是“许可证”,类似于公共汽车票,只有获取到票的线程才能进行操作。许可证数量有限,当数量耗尽时,后续线程需要等待,直到有线程释放其许可证。Semaphore构造器接受初始许可证数量,可以选择公平或非公平的获取方式。
Semaphore提供了获取和释放许可证的API,默认每次操作一个许可证。获取许可证有直接和尝试两种方式,直接获取可能阻塞,而尝试不会。acquire方法内部调用的是AQS的acquireSharedInterruptibly,它会尝试公平或非公平地获取,并在获取失败时决定是否阻塞。释放许可证则直接调用AQS的releaseShared方法,通过自旋循环确保同步状态的正确更新。
Semaphore的应用广泛,本文通过实现一个简单的数据库连接池,展示了Semaphore如何控制连接的并发使用。连接池初始化时创建固定数量的连接,每次线程请求连接时需要获取许可证,释放连接时则释放许可证。测试结果验证了Semaphore有效管理连接并发并确保了流量控制。
代码示例与测试结果表明,Semaphore通过控制许可证数量,确保了资源使用的合理调度,当连接池中所有连接被占用,后续请求将被阻塞,直到有连接被释放。这清楚地展示了Semaphore在并发控制中的作用。
初学Python,有哪些Pythonic的源码推荐阅读
1. 初学Python时,阅读Pythonic的源码是提高编程技能的有效方法。推荐从Python标准库中关于网络编程的myeclipse导出项目源码代码开始学习。
2. 首先,深入研究`SocketServer`模块,它为创建服务器提供了基础。同时,学习与之相关的`socket`模块,掌握TCP和UDP编程的基础知识。
3. 接下来,关注`SocketServer`模块中的`ForkingMixIn`和`ThreadingMixIn`类,它们分别展示了forking和threading并发机制的混合使用,这是理解多线程和多进程编程的重要途径。
4. 了解`thread`和`threading`模块,这对于管理并发执行的线程至关重要。
5. 随后,研究`select`模块,它允许你处理I/O多路复用,这是理解操作系统如何高效处理并发I/O操作的关键。
6. 通过学习`select`模块,你将自然过渡到对`selectors`的理解,这是Python 3.7引入的更现代的I/O多路复用API。
7. 对于想要深入了解并发编程的初学者,可以学习`asyncore`和`asynchat`模块,它们是异步网络编程的基础。
8. 在网络编程的基础上,如果你的兴趣在于游戏开发或实时应用,可以探索`greenlet`和`gevent`,这些库提供了协程,有助于编写高效的并发代码。
9. 如果你对Web开发感兴趣,从`BaseHTTPServer`、`SimpleHTTPServer`和`CGIHTTPServer`开始你的学习之旅。这些模块可以帮助你理解基本的Web服务器和CGI(Common Gateway Interface)。
. 学习`cgi`和`cgitb`模块,这对于调试和运行CGI脚本非常有用。
. 掌握`cookielib`模块,它处理HTTP cookies,这对于处理用户会话和状态管理至关重要。
. 阅读`wsgiref`模块的源码,它是一个WSGI(Web Server Gateway Interface)参考实现,有助于你理解现代Web框架的工作原理。
. 学习如何编写自己的简单Web框架后,你可以更容易地理解并选择`Flask`、`Web.py`、`Django`或`Pyramid`等流行的Web框架。
. 在进行Web开发时,不可避免地需要与API进行交互。因此,熟悉`/yongxinz/gopher/tree/main/sc
ä½è ï¼yongxinz
七天杀上GitHub榜首!Java并发编程深度解析实战,JUC底层原理揭秘
在多核CPU和多线程技术普及的当今,我们面对的不再是多年前对于线程开启时机的问题。如今,无论是开发人员还是技术开发者,都需要深入了解多线程技术的方方面面。本文将从操作系统原理的角度,全面解析多线程技术,涵盖基础知识到高级进阶,分享作者多年的工作经验和踩坑后的教训。
多线程编程技术已经成为现代软件开发不可或缺的部分。然而,对于很多开发者来说,尽管有各种库和运行环境对操作系统多线程接口的封装,他们仍然面对着复杂的多线程逻辑,甚至只是简单调用库的“业务”程序员。本文旨在从基础出发,深入浅出地讲解多线程技术的各个层面。
本文分为章,从Java线程的实践及原理揭秘开始,逐步深入到synchronized实现原理、volatile解决可见性和有序性问题、J.U.C中的重入锁和读写锁、线程通信中的条件等待机制、J.U.C并发工具集实战、并发编程必备工具、阻塞队列设计原理及实现、并发安全集合原理及源码、线程池设计原理、以及Java并发编程中的异步编程特性。每一章节都基于作者的经验总结和踩坑后的教训,为读者提供全面而深入的指导。
如果您对这份手册感兴趣并希望深入学习,欢迎您点赞并关注。获取完整内容的方式非常简单,只需点击下方链接即可。让我们一起探索多线程技术的奥秘,提升编程技能,迈向技术的高峰。
Java并发编程解析 | 基于JDK源码解析Java领域中并发锁之StampedLock锁的设计思想与实现原理 (三)
在并发编程领域,核心问题涉及互斥与同步。互斥允许同一时刻仅一个线程访问共享资源,同步则指线程间通信协作。多线程并发执行历来面临两大挑战。为解决这些,设计原则强调通过消息通信而非内存共享实现进程或线程同步。
本文探讨的关键术语包括Java语法层面实现的锁与JDK层面锁。Java领域并发问题主要通过管程解决。内置锁的粒度较大,不支持特定功能,因此JDK在内部重新设计,引入新特性,实现多种锁。基于JDK层面的锁大致分为4类。
在Java领域,AQS同步器作为多线程并发控制的基石,包含同步状态、等待与条件队列、独占与共享模式等核心要素。JDK并发工具以AQS为基础,实现各种同步机制。
StampedLock(印戳锁)是基于自定义API操作的并发控制工具,改进自读写锁,特别优化读操作效率。印戳锁提供三种锁实现模式,支持分散操作热点与削峰处理。在JDK1.8中,通过队列削峰实现。
印戳锁基本实现包括共享状态变量、等待队列、读锁与写锁核心处理逻辑。读锁视图与写锁视图操作有特定队列处理,读锁实现包含获取、释放方式,写锁实现包含释放方式。基于Lock接口的实现区分读锁与写锁。
印戳锁本质上仍为读写锁,基于自定义封装API操作实现,不同于AQS基础同步器。在Java并发编程领域,多种实现与应用围绕线程安全,根据不同业务场景具体实现。
Java锁实现与运用远不止于此,还包括相位器、交换器及并发容器中的分段锁。在并发编程中,锁作为实现方式之一,提供线程安全,但实际应用中锁仅为单一应用,提供并发编程思想。
本文总结Java领域并发锁设计与实现,重点介绍JDK层面锁与印戳锁。文章观点及理解可能存在不足,欢迎指正。技术研究之路任重道远,希望每一份努力都充满价值,未来依然充满可能。
ReentrantLock源码详细解析
在深入解析ReentrantLock源码之前,我们先了解ReentrantLock与同步机制的关系。ReentrantLock作为Java中引入的并发工具类,由Doug Lea编写,相较于synchronized关键字,它提供了更为灵活的锁管理策略,支持公平与非公平锁两种模式。AQS(AbstractQueuedSynchronizer)作为实现锁和同步器的核心框架,由AQS类的独占线程、同步状态state、FIFO等待队列和UnSafe对象组成。AQS类的内部结构图显示了其组件的构成。在AQS框架下,等待队列采用双向链表实现,头结点存在但无线程,T1和T2节点中的线程可能在自旋获取锁后进入阻塞状态。
Node节点作为等待队列的基本单元,分为共享模式和独占模式,值得关注的是waitStatus成员变量,它包含五种状态:-3、-2、-1、0、1。本文重点讨论-1、0、1状态,-3状态将不涉及。非公平锁与公平锁的差异在于,非公平锁模式下新线程可直接尝试获取锁,而公平锁模式下新线程需排队等待。
ReentrantLock内部采用非公平同步器作为其同步器实现,构造函数中根据需要选择非公平同步器或公平同步器。ReentrantLock默认采用非公平锁策略。非公平锁与公平锁的区别在于获取锁的顺序,非公平锁允许新线程跳过等待队列,而公平锁严格遵循队列顺序。
在非公平同步器的实例中,我们以T1线程首次获取锁为例。T1成功获取锁后,将exclusiveOwnerThread设置为自身,state设置为1。紧接着,T2线程尝试获取锁,但由于state为1,获取失败。调用acquire方法尝试获得锁,尝试通过tryAcquire方法实现,非公平同步器的实现调用具体逻辑。
在非公平锁获取逻辑中,通过CAS操作尝试交换状态。交换成功后,设置独占线程。当当前线程为自身时,执行重入操作,叠加state状态。若获取锁失败,则T2和T3线程进入等待队列,调用addWaiter方法。队列初始化通过enq方法实现,enq方法中的循环逻辑确保线程被正确加入队尾。新线程T3调用addWaiter方法入队,队列初始化完成。
在此过程中,T2和T3线程开始自旋尝试获取锁。若失败,则调用parkAndCheckInterrupt()方法进入阻塞状态。在shouldParkAfterFailedAcquire方法中,当前驱节点等待状态为CANCELLED时,方法会找到第一个非取消状态的节点,并断开取消状态的前驱节点与该节点的连接。若T5线程加入等待队列,T3和T4线程因为自旋获取锁失败进入finally块调用取消方法,找到等待状态不为1的节点(即T2),断开连接。
理解了shouldParkAfterFailedAcquire方法后,我们关注acquireQueued方法的实现。该方法确保线程在队列中正确释放,如果队列的节点前驱为head节点,成功获取锁后,调用setHead方法释放线程。setHead方法通过CAS操作更新head节点,释放线程。acquire方法中的阻塞是为防止线程在唤醒后重新尝试获取锁而进行的额外阻断。
锁的释放过程相对简单,将state减至0,将exclusiveOwnerThread设置为null,完成锁的释放。通过上述解析,我们深入理解了ReentrantLock的锁获取、等待、释放等核心机制,为并发编程提供了强大的工具支持。