1.文华财经软件指标公式赢顺云指标公式启航DK捕猎者智能量化系统指标源码
2.量化投资之工具篇:Backtrader从入门到精通(3)Cerebro代码详解
3.通达信量化擒龙先手!量化量化主附图/选股指标源码分享
4.量化交易-vnpy_efinance-VeighNa框架数据服务接口
5.硬核福利量化交易神器talib中28个技术指标的机器机器Python实现(附全部源码)
6.开源大模型GGUF量化(llama.cpp)与本地部署运行(ollama)教程
文华财经软件指标公式赢顺云指标公式启航DK捕猎者智能量化系统指标源码
在技术分析领域,文华财经软件中的源码源码指标公式提供了多种量化分析工具,帮助投资者在交易决策中获取优势。量化量化以下是机器机器一个具体示例,展示了如何构建一个智能量化系统指标源码,源码源码主力多空图指标源码以实现自动化交易策略。量化量化
这个指标源码首先通过MA(移动平均)函数计算不同周期的机器机器移动平均线,包括日、源码源码日、量化量化日、机器机器日和日的源码源码移动平均线。这些平均线被视为价格趋势的量化量化重要指示器,帮助交易者识别市场方向。机器机器MA5、源码源码MA、MA、MA、MA和MA分别代表了5日、日、日、日、springboot手写源码日和日的简单移动平均线。
接着,通过RSV(相对强弱指数)计算公式,评估价格变动的相对强弱。RSV=(C-LLV(L,9))/(HHV(H,9)-LLV(L,9))*,其中C代表收盘价,L代表最低价,H代表最高价。RSV值的计算帮助交易者识别市场的超买或超卖状态。
进一步,通过SMA(简单移动平均)计算K、D和J值,形成KDJ指标,K=3*SMA(RSV,3,1);D=SMA(K,3,1);J=3*K-2*D。KDJ指标被广泛应用于判断市场趋势和拐点,为交易者提供买入或卖出信号。
最后,通过逻辑判断和条件计算,系统能够自动识别特定的交易信号。例如,当J值穿越一个预先设定的军装照源码临界值(例如J<),同时满足X和Y的条件时(X=LLV(J,2)=LLV(J,8)且Y=IF(CROSS(J,REF(J+0.,1)) AND X AND J<,,0)),系统可能会触发一个买入或卖出信号,以指示交易者采取相应的行动。
通过这样的智能量化系统指标源码,文华财经软件能够为投资者提供高效、自动化的交易策略,帮助其在市场中获取竞争优势。这种自动化的交易策略不仅节省了人力成本,还能够减少主观判断的偏差,提高交易决策的准确性。
量化投资之工具篇:Backtrader从入门到精通(3)Cerebro代码详解
在深入理解backtrader的工具使用中,Cerebro作为核心控制器,其代码详解至关重要。它负责整个系统的协调和管理,虽然看似复杂,但实质上是将任务分发给其他组件如策略、数据源和分析器。让我们通过源代码解析来逐步揭示其工作原理。
首先,Cerebro的初始化主要设置公共属性,并接受一系列参数,魔法日记源码这些参数在元类中统一处理,通过**kwargs传递。初始化过程中,实际上并未做太多工作,而是为后续操作准备了基础结构。
数据源的添加是通过cerebro.adddata方法,它可以处理普通数据和resample/replay数据,这个过程涉及对数据源的筛选和处理后加入到Cerebro的datas列表中。
策略的添加同样简单,只是将策略类及参数存储在strats容器中,策略会在run时实例化。
Cerebro的run函数是整个流程的驱动器,它根据传入的参数,按照时间驱动数据运行,同时协调策略、分析器和观察者等组件协同工作。run函数的代码复杂,但关键在于它如何管理和调度各个组件。
最后,Cerebro通过plot方法实现可视化输出,其自身并不直接进行绘图,大理源码建站而是调用plotter模块来完成。
总的来说,虽然Cerebro的代码看起来复杂,但实际上它的作用是连接各个组件,提供一个框架让策略和数据处理得以高效执行。理解Cerebro的工作原理后,后续理解其他部件如data feeds的运作就更为顺畅了。下文我们将转向数据类的解析,进一步探讨数据的管理与驱动机制。
通达信量化擒龙先手!主附图/选股指标源码分享
通达信量化擒龙先手!主附图/选股指标源码分享
一. 指标简介:
二. 主图指标源码
MA5:MA(C,5);
MA:MA(C,);
MA:MA(C,);
MA:MA(C,);
DIF1:=EMA(CLOSE,)-EMA(CLOSE,);
DEA1:=EMA(DIF1,9);
AAA1:=(DIF1-DEA1)*2*;
AAA上:=IF(AAA1>REF(AAA1,1),AAA1,DRAWNULL);
AAA下:=IF(AAA1
买:=;
入:=AAA1-REF(AAA1,1);
正大:=CROSS(入,买);
DIF:=EMA(CLOSE,)-EMA(CLOSE,);
DEA:=EMA(DIF,);
AAA:=(DIF-DEA)*2*;
牛股:=CROSS(AAA-REF(AAA,1),);
正大牛股:=正大 AND 牛股;
HSL:=V/CAPITAL*>5;
S1:=IF(NAMELIKE('S'),0,1);
S2:=IF(NAMELIKE('*'),0,1);
Z3:=NOT(INBLOCK('近期解禁'));
Z4:=NOT(INBLOCK('拟减持'));
Z5:=NOT(INBLOCK('股东减持'));
Z6:=NOT(INBLOCK('基金减持'));
Z7:=NOT(INBLOCK('即将解禁'));
Z8:=IF(CODELIKE(''),0,1);
Z9:=IF(CODELIKE('8'),0,1);
去掉:=S1 AND S2 AND Z3 AND Z4 AND Z5 AND Z6 AND Z7 AND Z8 AND Z9;
AA:=MA(CLOSE,8);
BB:=((ATAN((AA - REF(AA,1))) * 3.) * );
均线:=MA(CLOSE,);
均线:=MA(CLOSE,);
均线:=MA(CLOSE,);
天马:=((((((OPEN <= 均线) AND ((均线 - REF(均线,1)) > 0))
AND (CLOSE > 均线)) AND (BB > 1)) AND ((CLOSE / OPEN) > 1.)));
{ 股价必涨}
AA:=IF(CLOSE/REF(CLOSE,1)>1. AND HIGH/CLOSE<1. AND IF(CLOSE>REF(CLOSE,1),,0)>0, , 0);
SS:=MA((LOW+HIGH+CLOSE)/3,5)>REF(MA((LOW+HIGH+CLOSE)/3,5),1) AND REF(MA((LOW+HIGH+CLOSE)/3,5),1)
SC:=LHHV(MA((LOW+HIGH+CLOSE)/3,5),) AND C>REF(C,1) AND C>O;
MR:=SC AND COUNT(SS,2);
BB:=MR AND NOT(REF(MR,1));
股价必涨:=AA OR BB OR 天马;
{ 抄底}
二十日换手率:=BETWEEN(SUM(HSCOL,),,);{ 意思是 日换手率介于---之间}
DFO:=(C-REF(C,1))/REF(C,1)*<-5;
AAO:=BARSLAST(DFO);
突破:=CROSS(C,REF(O,AAO));
抄底:=二十日换手率 AND 突破;
三.副图指标源码:
DIF1:=EMA(CLOSE,)-EMA(CLOSE,);
DEA1:=EMA(DIF1,9);
AAA1:=(DIF1-DEA1)*2*;
AAA上:=IF(AAA1>REF(AAA1,1),AAA1,DRAWNULL);
AAA下:=IF(AAA1
买:=;
入:=AAA1-REF(AAA1,1);
正大:=CROSS(入,买);
DIF:=EMA(CLOSE,)-EMA(CLOSE,);
DEA:=EMA(DIF,);
AAA:=(DIF-DEA)*2*;
牛股:=CROSS(AAA-REF(AAA,1),);
正大牛股:=正大 AND 牛股;
HSL:=V/CAPITAL*>5;
S1:=IF(NAMELIKE('S'),0,1);
S2:=IF(NAMELIKE('*'),0,1);
Z3:=NOT(INBLOCK('近期解禁'));
Z4:=NOT(INBLOCK('拟减持'));
Z5:=NOT(INBLOCK('股东减持'));
Z6:=NOT(INBLOCK('基金减持'));
Z7:=NOT(INBLOCK('即将解禁'));
Z8:=IF(CODELIKE(''),0,1);
Z9:=IF(CODELIKE('8'),0,1);
去掉:=S1 AND S2 AND Z3 AND Z4 AND Z5 AND Z6 AND Z7 AND Z8 AND Z9;
AA:=MA(CLOSE,8);
BB:=((ATAN((AA - REF(AA,1))) * 3.) * );
均线:=MA(CLOSE,);
均线:=MA(CLOSE,);
均线:=MA(CLOSE,);
天马:=((((((OPEN <= 均线) AND ((均线 - REF(均线,1)) > 0))
AND (CLOSE > 均线)) AND (BB > 1)) AND ((CLOSE / OPEN) > 1.)));
{ 股价必涨}
AA:=IF(CLOSE/REF(CLOSE,1)>1. AND HIGH/CLOSE<1. AND IF(CLOSE>REF(CLOSE,1),,0)>0, , 0);
SS:=MA((LOW+HIGH+CLOSE)/3,5)>REF(MA((LOW+HIGH+CLOSE)/3,5),1) AND REF(MA((LOW+HIGH+CLOSE)/3,5),1)
SC:=LHHV(MA((LOW+HIGH+CLOSE)/3,5),) AND C>REF(C,1) AND C>O;
MR:=SC AND COUNT(SS,2);
BB:=MR AND NOT(REF(MR,1));
股价必涨:=AA OR BB OR 天马;
{ 抄底}
二十日换手率:=BETWEEN(SUM(HSCOL,),,);{ 意思是 日换手率介于---之间}
DFO:=(C-REF(C,1))/REF(C,1)*<-5;
AAO:=BARSLAST(DFO);
突破:=CROSS(C,REF(O,AAO));
抄底:=二十日换手率 AND 突破;
四. 选股指标源码
指标源码内容与前文一致,仅包含主图和副图指标源码,用于量化分析股票。指标包括移动平均线、MACD、股价波动判断、换手率分析等,通过设置条件筛选出具有投资潜力的股票。使用时根据具体市场情况和策略进行调整。注意:指标的有效性需结合市场情况综合判断,不应单一依赖。
量化交易-vnpy_efinance-VeighNa框架数据服务接口
我们之前对vnpy_ctastrategy相关回测源码进行了解析:
回首凡尘不做仙:VNPY源码分析1-vnpy_ctastrategy-运行回测
回首凡尘不做仙:VNPY源码分析2-vnpy_ctastrategy-撮合成交
回首凡尘不做仙:VNPY源码分析3-vnpy_ctastrategy-计算策略统计指标
相关历史数据可以通过各类数据服务的适配器接口(datafeed)下载,目前vn.py支持以下接口:
然而,上述接口需要注册或付费才能获取数据。
为了帮助初学者更好地理解和学习量化交易以及vn.py框架,我开发了基于efinance数据接口的vn.py的datafeed。
开源地址为:github.com/hgy/vnpy...
编译安装:
下载源代码后,解压并在cmd中运行:
dist目录下vnpy_efinance-x.x.x-py3-none-any.whl包
使用:
安装完成后,在vn.py框架的trader目录中的setting.py中进行配置:
注意:此处只需配置datafeed.name,username和password无需配置。
配置完成后,可以通过以下示例进行调用:
同时,这里分享一个efinance数据下载及入库方法:
然而,efinance在获取分钟级别数据方面并不友好。对于需要获取分钟级别数据的初学者来说,我们可以使用天勤免费版的数据接口:
回首凡尘不做仙:量化交易-数据获取-vnpy_tqsdk免费版
硬核福利量化交易神器talib中个技术指标的Python实现(附全部源码)
本文将带您深入学习纯Python、Pandas、Numpy与Math实现TALIB中的个金融技术指标,不再受限于库调用,从底层理解指标原理,提升量化交易能力。
所需核心库包括:Pandas、Numpy与Math。重要提示:若遇“ewma无法调用”错误,建议安装Pandas 0.版本,或调整调用方式。
我们逐一解析常见指标:
1. 移动平均(Moving Average)
2. 指数移动平均(Exponential Moving Average)
3. 动量(Momentum)
4. 变化率(Rate of Change)
5. 均幅指标(Average True Range)
6. 布林线(Bollinger Bands)
7. 转折、支撑、阻力点(Trend, Support & Resistance)
8. 随机振荡器(%K线)
9. 随机振荡器(%D线)
. 三重指数平滑平均线(Triple Exponential Moving Average)
. 平均定向运动指数(Average Directional Movement Index)
. MACD(Moving Average Convergence Divergence)
. 梅斯线(High-Low Trend Reversal)
. 涡旋指标(Vortex Indicator)
. KST振荡器(KST Oscillator)
. 相对强度指标(Relative Strength Index)
. 真实强度指标(True Strength Index)
. 吸筹/派发指标(Accumulation/Distribution)
. 佳庆指标(ChaiKIN Oscillator)
. 资金流量与比率指标(Money Flow & Ratio)
. 能量潮指标(Chande Momentum Oscillator)
. 强力指数指标(Force Index)
. 简易波动指标(Ease of Movement)
. 顺势指标(Directional Movement Index)
. 估波指标(Estimation Oscillator)
. 肯特纳通道(Keltner Channel)
. 终极指标(Ultimate Oscillator)
. 唐奇安通道指标(Donchian Channel)
参考资料:
乐学偶得系列笔记,开源项目ultrafinance。深入学习并应用这些指标,将大大提升您的量化交易与金融分析技能。
开源大模型GGUF量化(llama.cpp)与本地部署运行(ollama)教程
llama.cpp与ollama是开源项目,旨在解决大型模型在本地部署时遇到的问题。通过llama.cpp,用户可以对模型进行量化,以解决模型在特定电脑配置下无法运行的问题。同时,ollama则提供了一个简单的方法,让量化后的模型在本地更方便地运行。
对于许多用户来说,下载开源大模型后,往往面临不会运行或硬件配置不足无法运行的困扰。本文通过介绍llama.cpp和ollama的使用,提供了一个从量化到本地运行的解决方案。
下面,我们以Llama2开源大模型为例,详细说明如何在本地使用llama.cpp进行量化GGUF模型,并通过ollama进行运行。
在开始前,如果对量化和GGUF等专业术语感到困惑,建议使用文心一言或chatGPT等AI工具进行查询以获取更多信息。
使用ollama进行运行非常简单,只需访问其官网下载安装应用即可。支持众多大模型,操作指令直接使用`ollama run`即可自动下载和运行大模型。
运行指令示例:对于llama2大模型,原本.5G的7b模型在ollama中压缩至3.8G,量化等级为Q4_0。若需导入并运行已量化的GGUF模型,只需创建一个文件并添加FROM指令,指定模型本地文件路径。
在使用ollama进行模型操作时,需注意创建模型、运行模型等步骤。若有疑问,可留言交流。
对于自行下载的模型,要实现量化成GGUF格式,就需要借助于llama.cpp项目。该项目旨在实现LLM推理,支持多种量化级别,如1.5位、2位、3位、4位、5位、6位和8位整数量化,以提高推理速度并减少内存使用。
要使用llama.cpp,首先需克隆源码并创建build目录,然后通过Cmake进行编译。推荐使用Visual Studio 进行编译。编译成功后,可在bin/release目录找到编译好的程序。
接下来,通过llama.cpp项目中的convert.py脚本将模型转换为GGUF格式。对于llama2-b模型,转换后的模型大小从.2G缩减至6.G。
量化模型后,运行时使用llama.cpp编译的main.exe或直接使用ollama进行操作。通过创建文本文件并指定模型,使用ollama run指令即可轻松运行量化后的模型。
本文通过详细示例展示了如何利用llama.cpp和ollama对大模型进行量化并实现本地运行。若需进一步了解或在操作中遇到问题,欢迎在留言区进行交流。