1.视觉机器学习20讲-MATLAB源码示例(5)-随机森林(Random Forest)学习算法
2.MMDet——Deformable DETR源码解读
3.深度学习目标检测系列:一文弄懂YOLO算法|附Python源码
4.视觉机器学习20讲-MATLAB源码示例(20)-蚁群算法
5.OpenCV Carotene 源码阅读(持续更新)
6.计算机视觉算法有哪些?CV算法
视觉机器学习20讲-MATLAB源码示例(5)-随机森林(Random Forest)学习算法
随机森林(Random Forest)学习算法是一种集成学习中的Bagging算法,用于分类任务。计数计数在学习该算法之前,源码源码需要理解决策树、视觉视觉集成学习和自主采样法的计数计数基本概念。随机森林由多个决策树组成,源码源码C Zbar源码分析其最终决策结果是视觉视觉基于各决策树多数表决得出。相较于单一决策树,计数计数随机森林具有处理多种数据类型、源码源码大量输入变量、视觉视觉评估变量重要性、计数计数内部估计泛化误差、源码源码适应不平衡分类数据集等优点。视觉视觉
随机森林方法有以下几大优势:
1. 在数据集上表现出色,计数计数相较于其他算法具有优势。源码源码
2. 便于并行化处理,对于大数据集有明显优势。
3. 能够处理高维度数据,无需进行特征选择。
深度学习课程中,随机森林通常作为机器学习方法的一部分出现。对随机森林感兴趣的读者,建议详细阅读《机器学习讲》第五讲的内容,并下载提供的MATLAB源码。注意,源码调用了特定库,仅在位MATLAB中可运行。本系列文章涵盖了从Kmeans聚类算法到蚁群算法在内的讲MATLAB源码示例。
MMDet——Deformable DETR源码解读
Deformable DETR: 灵活与精准的检测架构 Deformable DETR是对DETR模型的革新,通过引入Deformable结构和Multi-Scale策略,实现了性能提升与训练成本的优化。它解决了DETR中全像素参与导致的计算和收敛问题,通过智能地选取参考点,实现了对不同尺度物体的高效捕捉。这种结构弥补了Transformer在视觉任务上的局限,如今已经成为业界标准。 核心改进在于对Attention机制的重塑,Deformable DETR基于Resnet提取的特征,融入了多尺度特征图和位置编码,bbs论坛系统源码生成包含目标查询的多层次特征。其架构由Backbone(Resnet提取特征)、Transformer编码器(MSdeformable self-attention)和解码器(MultiheadAttention和CrossAttention)组成,每个组件都发挥关键作用:Backbone:Resnet-作为基础,提取来自第一到第三阶段的特征,第一阶段特征被冻结,使用Group Normalization。
Neck:将输入通道[, , ]映射到通道,利用ChannelMapper,生成4个输出特征图。
Bbox Head:采用DeformableDETRHead类型的结构,负责目标检测的最终预测。
Deformable Attention的核心在于其创新的处理方式:参考点(Reference Points)作为关键元素,预先计算并固定,offsets由query通过线性层生成,Attention权重由query通过线性变换和Softmax函数确定。而在Value计算上,输入特征图通过位置选择,结合参考点和offset,实现精确特征提取。最后,Attention权重与Value的乘积经过Linear层,得出最终输出。 在Decoder部分,Self-Attention模块关注对象查询,Cross-Attention则在对象查询与编码器输出间进行交互,生成包含物体特征的query。输入包含了query、值(编码器特征图)、位置编码、padding mask、参考点、空间形状等信息,输出则是每层decoder的object query和更新后的参考点。 简化后的代码,突出了关键部分的处理逻辑,如Encoder使用Deformable Attention替换传统的Self Attention,输入特征map经过处理后,商城源码 免费下载参考点的初始化和归一化操作确保了模型的高效性能。Decoder中的注意力机制和输入输出细节,都展现出模型灵活且精准的检测能力。 Deformable DETR的设计巧妙地融合了Transformer的灵活性和Transformer架构的效率,为目标检测任务提供了全新的解决方案,展现出了其在实际应用中的优越性。深度学习目标检测系列:一文弄懂YOLO算法|附Python源码
深度学习目标检测系列:一文掌握YOLO算法 YOLO算法是计算机视觉领域的一种端到端目标检测方法,其独特之处在于其高效性和简易性。相较于RCNN系列,YOLO直接处理整个图像,预测每个位置的边界框和类别概率,速度极快,每秒可处理帧。以下是YOLO算法的主要特点和工作流程概述: 1. 训练过程:将标记数据传递给模型,通过CNN构建模型,并以3X3网格为例,每个单元格对应一个8维标签,表示网格中是否存在对象、对象类别以及边界框的相对坐标。 2. 边界框编码:YOLO预测的边界框是相对于网格单元的,通过计算对象中心与网格的相对坐标,以及边界框与网格尺寸的比例来表示。 3. 非极大值抑制:通过计算IoU来判断预测边界框的质量,大于阈值(如0.5)的框被认为是好的预测。非极大值抑制用于消除重复检测,确保每个对象只被检测一次。 4. Anchor Boxes:对于多对象网格,使用Anchor Boxes预先定义不同的边界框形状,以便于多对象检测。 5. 模型应用:训练时,输入是图像和标签,输出是每个网格的预测边界框。测试时,模型预测并应用非极大值抑制,最终输出对象的单个预测结果。 如果你想深入了解并实践YOLO算法,可以参考Andrew NG的GitHub代码,那里有Python实现的ui界面 源码下载示例。通过实验和调整,你将体验到YOLO在目标检测任务中的强大功能。视觉机器学习讲-MATLAB源码示例()-蚁群算法
蚁群算法是一种概率型优化算法,由Marco Dorigo在年提出,灵感来源于蚂蚁觅食路径的发现过程。该算法具备分布计算、信息正反馈和启发式搜索特性,是一种全局优化算法。在蚁群系统中,蚂蚁通过释放信息素进行信息传递,蚁群整体能够实现智能行为。经过一段时间后,蚁群会沿着最短路径到达食物源,这一过程体现了一种类似正反馈的机制。与其他优化算法相比,蚁群算法具有正反馈机制、个体间环境通讯、分布式计算和启发式搜索方式等特点,易于寻找到全局最优解。
蚁群算法广泛应用于组合优化问题,如旅行商问题、指派问题、Job-shop调度问题、车辆路由问题、图着色问题和网络路由问题等。其在网络路由中的应用受到越来越多学者的关注,相较于传统路由算法,蚁群算法具有信息分布式性、动态性、随机性和异步性等特点,非常适合网络路由需求。
深入学习蚁群算法的具体原理,请参考《机器学习讲》第二十讲内容。本系列文章涵盖了机器学习领域的多个方面,包括Kmeans聚类算法、KNN学习算法、回归学习算法、决策树学习算法、php页面源码下载随机森林学习算法、贝叶斯学习算法、EM算法、Adaboost算法、SVM算法、增强学习算法、流形学习算法、RBF学习算法、稀疏表示算法、字典学习算法、BP学习算法、CNN学习算法、RBM学习算法、深度学习算法和蚁群算法。MATLAB仿真源码和相关数据已打包提供,欢迎查阅和使用。
OpenCV Carotene 源码阅读(持续更新)
OpenCV的Carotene库是NVIDIA为优化计算机视觉(CV)操作而精心设计的,特别针对ARM Neon架构,旨在加速诸如resize和Canny等关键算法。这款库以其清晰的代码和对SIMD编程初学者的友好性而备受赞誉。本文将深入探索Carotene的魅力,揭示其独特的功能点,如accumulate函数的多变接口,包括square accumulate和addweight,后者展示了创新的处理策略。
Carotene的Blur(k3x3_u8)处理方法与众不同,采用了seperateFilter算法,而非传统的O(1)复杂度,展示了其在效率优化上的独到之处。值得一提的是,行方向移位求和和normalize系数的量化计算,都被Carotene以精细的技巧逐一解析。要了解更多细节,不妨直接查看其源码,那里充满了值得学习的见解和实践经验。
Carotene在指令处理上展现出了高效能,如一次性执行乘系数、类型转换和右移等操作,通过vqrdmulhq_s等矢量化指令,实现了寄存器数据的复用。对于边界处理,left_border通过set_lane技术轻松搞定,而right_border的成本则更低。库中还包括了integral和sqrtIntegral的实现,行方向积分的向量化通过移位操作得以高效完成,即使在arm Neon缺乏element shift指令的情况下,Carotene也能通过uint_t标量移位巧妙解决。
在模糊处理上,GaussianBlur遵循Blur的优化思路,对gauss_kernel进行了量化。另外,还有诸如absdiff、add_weighted、add、bitwise以及channel_extract/combine等N-1种基础算子,它们巧妙地结合了neon指令和宏定义,为性能提升做出了贡献。这些细节的精心设计,充分体现了Carotene在提升OpenCV性能上的匠心独运。
总的来说,Carotene的源码是学习SIMD编程和OpenCV优化的绝佳资源,无论是对于开发者还是对性能追求者来说,都是一份值得深入探索的宝藏。如果你对这些技术感兴趣,不要犹豫,立即投身于源码的世界,你会发现其中隐藏的无数精彩。
计算机视觉算法有哪些?CV算法
计算机视觉是深度学习领域内备受关注的分支,它汇聚了计算机科学、数学、工程、物理学以及心理学等多个学科的知识。关于计算机视觉算法有哪些,业内专家给出了以下解答。
早期算法包括:
子空间(线性降维)
PCA(主成分分析):旨在最大限度地保留原始数据的主要信息,同时降低冗余信息;
LDA(线性判别分析):通过增大类间差距、减小类内差距来实现分类;
非线性降维:流形学习、加入核函数等方法。
ICA(独立成分分析):相较于PCA,ICA在处理光照、人脸表情、姿态等方面具有更好的效果,但其泛化能力有限。
HMM(隐马尔可夫):相比其他算法,HMM在处理光照变化、表情和姿态变化等方面更加鲁棒。
后期算法:通过loss函数优化模型结构,从而得到具有区分度的特征。
常用算法总结:
计算机视觉相关算法的源代码;
计算机视觉常用算法博客。
特征提取算法(寻找关键点):
(1) SIFT(尺度不变特征变换):具有尺度不变性,能够在图像中检测到关键点;
(2) SURF(加速稳健特征,SIFT加速版):通过构建Hessian矩阵,判断当前点是否为邻近区域中更亮或更暗的点,从而确定关键点位置;
优:特征稳定;
缺:对于边缘光滑的目标提取能力较弱。
(3) ORB:结合Fast与Brief算法,为Fast特征点增加方向性,实现旋转不变性,并提出金字塔方法解决尺度不变性问题;
ORB算法速度是SIFT的倍,是SURF的倍。
经观察,ORB算法在特征点标记时数量较少,如图所示。
SIFT、SURF、ORB实现;
(4) FAST角点检测:主要考虑像素点附近的圆形窗口上的个像素,通过比较像素强度,判断是否为角点;
非极大值抑制:在存在多个关键点时,删除角响应度较小的特征点。
(5) HOG(方向梯度直方图);
(6) LBP(局部二值特征):论述了高维特征与验证性能的正相关关系,即人脸维度越高,验证的准确度就越高。
(7) Haar:
做个 ROS 2 视觉检测开源库-YOLO介绍与使用
在无人驾驶和室内工作场景中,机器人需要进行物体识别。计算机视觉技术在机器人系统中扮演着至关重要的角色。YOLO(You Only Look Once)是一种高速而准确的目标检测算法,能够实时识别图像或视频中的多个对象,而无需多次检测。本章将详细介绍如何将目标检测算法YOLO与ROS 2集成,同时探讨如何创建一个开源库来完成目标检测任务。
目标检测是计算机视觉领域中的一项重要任务,它的主要作用是识别图像中的物体并确定其位置。YOLO 就是一种高效且准确的多物体检测算法,其特点是速度快,能够捕捉到目标的全局信息,减少了背景误检的情况。YOLO 有多个版本,本章我们选用安装更为方便和更容易投入生产的 YOLOv5 作为我们学习和使用的版本。
在系统上安装 YOLOv5 非常简单,只需要通过 Python 包管理器 pip,一行命令就可以安装。如果对源码感兴趣或者有修改源码需求的小伙伴,可以通过下载源码方式进行安装。安装完成后,就可以使用命令行工具进行训练和检测。这里使用 YOLOv5 提供的训练好的常见物体的目标检测模型进行演示,通过命令下载模型文件和待检测。对于 zidane.jpg ,一共检测出了三个物体,耗时 .8ms。有了模型文件和,使用命令就可以对该进行目标检测。
除了直接检测一个本地,也可以直接指定系统视频设备的编号来启动实时的检测。感受完 YOLO 的强大,要想让 YOLO 结合 ROS 2 一起使用,我们还要掌握如何使用 Python 调用 yolov5 模块,完成检测。
基于NVIDIA Xavier NX(ubuntu.)的Optitrack视觉定位 PX4+ros noetic(实 物运行记录)
欢迎关注: csdn:会变身的火娃(+粉丝) 个人博客:www.huowa.xyz 微信公众号:会变身的火娃
前言
在基于NVIDIA Xavier NX(ubuntu.)的Optitrack视觉定位系统中,PX4和ROS Noetic的集成与实机运行记录详述如下。
一:硬件准备
硬件准备包括一台主电脑(NX)、网线(用于直接连接)和无线网卡(用于远程连接)。
二:软件准备
1:远程登录软件 NoMachine
下载Linux版NoMachine,解压安装,并添加权限,使用时需注意Linux与Windows间的兼容性。
2:安装ROS
采用小鱼一键安装ROS的代码。
3:源码安装mavros(示例的ROS版本为noetic)
依赖安装、创建工作空间、更新获取最新mavlink和mavros,解决访问问题,下载并安装源码包,编译源码,添加环境变量。
三:PX4和NX通信硬件连接
Nx硬件接口与px4硬件接口的连接,需确认连接方式,确保通信链路稳定。
四:软件配置
飞控参数设置,使用非QGC官方版本的Windows或Mac进行调参。网卡驱动安装,确保无线网络正常。
五:连接验证
Mavros测试,修改串口位置与波特率,执行指令验证通讯成功,确保电池接入,实现Mavros与px4间的通讯。
六:基于机载电脑利用Optitrack为PX4提供定位
在ubuntu机载电脑环境下安装vrpn,配置并验证与主机的通信。通过vrpn_client_node运行程序,将optitrack位置数据通过mavros传给飞控。
七:实机运行记录
在集成与调试过程中,记录了从硬件准备到软件安装,从通信测试到定位实现的详细步骤,为后续类似项目的参考提供了宝贵经验。
vue实现的带滑块调整的动态环形统计图html页面前端源码
今天,我们将带您深入了解一个用 Vue 技术构建的动态环形统计图表的 HTML 页面前端源码。这不仅是对 Vue 技术的一次实际应用,更是对动态数据可视化的一种探索。
这款 Vue 实现的动态环形统计图表 HTML 页面前端源码,提供了独特的交互体验,通过调整滑块,用户可以实时控制环形图中不同颜色区域的比例,直观地展示数据的动态变化。图表的美观与功能并重,为您带来视觉与操作的双重享受。
图 1 展示了源码的完整界面,用户在初次浏览时就能感受到其简洁而富有科技感的外观。图 2 则进一步展示了滑块调整功能的效果,通过控制滑块,用户能够轻松调整环形图中各个部分的颜色比例,从而反映出数据的不同分布。
源码的完整性体现在其包含了所有必要的 Vue 组件和逻辑,以及与数据交互的脚本部分。这意味着,无论是前端界面的构建,还是数据的动态更新,都能在源码中找到实现的依据。对于那些希望深入学习 Vue 技术,或是在项目中实现动态数据可视化的开发者来说,这是一个宝贵的资源。
图 3 则为需要获取源码的朋友们提供了明确的指引。只需访问特定的链接,输入编码“”,便能轻松获取到此源码。这不仅简化了获取过程,也确保了资源的便捷性和安全性。
总的来说,这款 Vue 实现的动态环形统计图表 HTML 页面前端源码,不仅展示了 Vue 技术的强大应用潜力,也为数据可视化领域提供了创新的解决方案。希望本文的介绍能激发您对 Vue 技术的兴趣,以及对动态数据可视化的深入探索。