1.Flink源码算子
2.十二、源码flink源码解析-创建和启动TaskManager二
3.Flink源码编译
4.Flink源码分析——Checkpoint源码分析(二)
Flink源码算子
Flink应用程序的源码核心组件包括源(source)、转换(transformation)和目的源码地(sink),它们共同构成有向图,源码数据流从源开始,源码流向sink结束。源码源码编写应用源算子如env.addSource的源码底层实现涉及监控函数和连续读取文件操作,如env.readTextFile()调用了一系列方法,源码最终通过add.source添加到流处理环境。源码
转换算子种类繁多,源码如map和sum。源码map算子通过函数转换,源码经过层层调用,源码最终调用transformations.add方法,源码将算子添加到作业的源码血缘依赖列表中。print算子作为sink,通过addSink操作生成StreamSink operator,unity部落冲突源码其SinkFunction负责数据处理,如PrintSinkFunction的打印操作。
构建过程中,每次转换都会产生新的数据流,这些StreamTransformation会以隐式链表或图的形式组织起来,input属性记录上下游关系。执行阶段,会生成StreamGraph和JobGraph,然后提交到集群进行调度。
十二、flink源码解析-创建和启动TaskManager二
深入探讨Flink源码中创建与启动TaskManager的过程,我们首先聚焦于内部启动onStart阶段。此阶段核心在于启动TaskExecutorServices服务,具体步骤包括与ResourceManager的连接、注册和资源分配。
当TaskExecutor启动时,图像分割 c 源码首先生成新的注册并创建未完成的future,随后等待注册成功并执行注册操作。这一过程由步骤1至步骤5组成,确保注册与资源连接的无缝集成。一旦注册成功,资源管理器会发送SlotReport报告至TaskExecutor,然后分配slot。
TaskSlotTable开始分配slot,JobTable获取并提供slot至JobManager。这一流程确保资源的有效分配与任务的高效执行。与此同时,ResourceManager侧的TaskExecutor注册流程同样重要,包括连接与注册TaskExecutor。
一旦完成注册与资源分配,ResourceManager会发送SlotReport报告至JobMaster,提供slot以供调度任务。php采集源码商业这一步骤标志着slot的分配与JobManager的准备工作就绪,为后续任务部署打下基础。
在ResourceManager侧,slot管理组件注册新的taskManager,根据规则更新slot状态、释放资源或继续执行注册。这一过程确保资源的高效管理与任务的顺利进行。
在JobMaster侧,slot的分配与管理通过slotPool进行,确保待调度任务能够得到所需资源。这一阶段标志着任务调度与执行的准备就绪。
流程的最后,回顾整个创建与启动TaskManager的过程,从资源连接与注册到slot分配与任务调度,各个环节紧密相连,确保Flink系统的虚拟货物平台源码高效运行与任务的顺利执行。
Flink源码编译
1. 下载Flink稳定版1..2,可以从官方下载链接获取,将源码同步至远程机器,使用Jetbrains Gateway打开。
2. 以Jetbrains Gateway打开源码,源码目录存放于远程机器,它会自动解析为Maven项目。
3. 注意事项:在flink-runtime-web/pom.xml文件中,需将部分内容替换,具体如下:
确保先安装npm,通过命令`yum install npm`。否则编译过程中可能会出现错误。
为了编译时内存充足,需要调整Maven设置,增加JDK可用内存。在命令行中,可以在/etc/profile中配置,或在Maven配置中指定更大的内存。
编译命令如下,对于Jetbrains Gateway,需在Run Configurations中新增配置,调整执行参数以执行mvn install或mvn clean。
编译完成后,每个模块目标文件夹会生成相应的文件。
4. 接下来进行运行。首先启动JobManager,查看flink-runtime下的StandaloneSessionClusterEntrypoint类,配置文件目录需指定,如`--configDir configpath`,并配置日志参数。
主类缺失时,需在IDEA的项目结构模块中给flink-runtime添加依赖,从flink-dist/target目录下添加jar包。
修改配置文件,将允许访问的IP设置为0.0.0.0,以便外部访问。然后映射web端口,启动JobManager后可通过外部IP访问。
运行TaskManager的参数与JobManager类似,启动后自动注册到JobManager,外部访问验证成功。
源码编译与启动完成后,其他机器无需重复编译,只需在相应环境中执行预编译的可执行文件,即可实现分布式环境的Flink使用。
Flink源码分析——Checkpoint源码分析(二)
《Flink Checkpoint源码分析》系列文章深入探讨了Flink的Checkpoint机制,本文聚焦于Task内部状态数据的存储过程,深入剖析状态数据的具体存储方式。Flink的Checkpoint核心逻辑被封装在`snapshotStrategy.snapshot()`方法中,这一过程主要由`HeapSnapshotStrategy`实现。在进行状态数据的快照操作时,首先对状态数据进行拷贝,这里采取的是引用拷贝而非实例拷贝,速度快且占用内存较少。拷贝后的状态数据被写入到一个临时的`CheckpointStateOutputStream`,即`$CHECKPOINT_DIR/$UID/chk-n`格式的目录,这个并非最终数据存储位置。
在拷贝和初始化输出流后,`AsyncSnapshotCallable`被创建,其`callInternal()`方法中负责将状态数据持久化至磁盘。这个过程分为几个关键步骤:
获取`CheckpointStateOutputStream`,写入状态数据元数据,如状态名、序列化类型等。
对状态数据按`keyGroupId`进行分组,依次将每个`keyGroupId`对应的状态数据写入文件。
封装状态数据的元数据信息,包括存储路径和大小,以及每个`keyGroupId`在文件中的偏移位置。
在分组过程中,状态数据首先被扁平化并添加到`partitioningSource[]`中,同时记录每个元素对应的`keyGroupId`在`counterHistogram[]`中的位置。构建直方图后,数据依据`keyGroupId`进行排序并写入文件,同时将偏移位置记录在`keyGroupOffsets[]`中。具体实现细节中,`FsCheckpointStateOutputStream`用于创建文件系统输出流,配置包括基路径、文件系统类型、缓冲大小、文件状态阈值等。`StreamStateHandle`最终封装了状态数据的存储文件路径和大小信息,而`KeyedStateHandle`进一步包含`StreamStateHandle`和`keyGroupRangeOffsets`,后者记录了每个`keyGroupId`在文件中的存储位置,以供状态数据检索使用。
简而言之,Flink在执行Checkpoint时,通过一系列精心设计的步骤,确保了状态数据的高效、安全存储。从状态数据的拷贝到元数据的写入,再到状态数据的持久化,每一个环节都充分考虑了性能和数据完整性的需求,使得Flink的实时计算能力得以充分发挥。