【射线跟踪模型 源码】【linux源码编译移植】【游戏试玩系统源码】源码遍反码正负号

时间:2025-01-01 15:27:47 来源:通达信软件源码安装 编辑:拿到bilibili源码

1.原码,反码,补码,移码
2.什么是源码二进制原码,反码,遍反补码?
3.原码 反码 编码 规则
4.原码、码正反码、负号补码之间怎么快速转换,源码大神带你轻松学

源码遍反码正负号

原码,反码,补码,移码

        写在前面:该文章为本人学习中写的一些笔记和心得,发表出来主要是为了记录自己的学习过程。本人才疏学浅,笔记难免存在不足甚至纰漏,但会不定期更新。

        基本知识:假设有一个n位的二进制数

        则这个二进制数共有 种状态,这个数最大为

        反过来 ,写成二进制为 ,一共有8位,1后面7个小数

        以下举例均为n位数,实例为8位数

        原码

        简单直接的二进制,以下以定点数为例。

        定点纯小数: 0 首位为符号位,0为正1为负,这里表示0.1()

        定点纯整数: 0 这里表示1()

        因为有符号位,所以有正负零之分 0 和 1

        数据范围:-~(后面7位全为1)//公式表达为

        特点:原码不适合加减,但适合乘除

        反码

        正数的反码与其原码相同;负数的反码是对其符号位后的原码逐位取反,符号位不变(为1)

        反码能表达的数据范围:与源码一样

        补码

        目的:方便计算机进行加减

        特点:在机器中适合加减的数字表示方式

        补码能实现计算机"加上负数"的本质原理是模运算,也就是A减去B等于A加上B相对于A的补数再求模。就好像时钟顺时针拨动3h和逆时针拨动9h得到的结果一样。

        二进制求补码:

        补数=(原数+模)(mod 模),很明显,若原码是正,则补码是它本身,对于正数完全不用考虑求补码。

        对于计算机,因为两个相加的数的位数相同(n),且和不能超过n+1位,因此应该取的模是...(n个0)。

        因此对于n位纯小数,它的模(十进制)为2 ,对于n位纯整数,它的模为2 n

        模 : (1 0 )

        原码: ( 0 )

        注意到,尽管符号位没有任何数值信息,这里取模依然把符号位考虑进去了,原因是我们可以通过定义补码,来使第一个符号位参与计算机计算,从而得到想要的结果。

        (同时,把符号位算进去可以让我们在用数学公式法求二进制补数时,直接从结果得到补码

        例: x= -0.

        [x]è¡¥=+x=.-0.=1.

        原来是要取模得补数为0.(2),但正好首位的1可以表示原数的负号,因此可直接读出补码为1

        )

        因此对于补码,符号位既起指示正负号的作用,又参与运算。

        另外,区别于原码有两个0(正负0),在补码的规定中,只有一个0(...的正0,因为原码也全是0),而1 ...可以表示-1(补码纯小数)或-2 n-1 (补码纯整数)

        //可以这么记(以纯整数为例):因为后面n-1个0取反后为n-1个1,加1后为2 n-1 (),前面一个1表示负数,因此补码能表示-2 n-1

        补码怎么来:原码为正,补码与原码相同;原码为负,后面的位数为原码取反加1

        移码

        目的:为了方便计算机比大小,消除符号位对计算机的干扰

        原理是把负数部分全部移到非负数方向,也就是说要把第一位符号位的意义给消除掉。消除方法为:对于补码的正数,符号位由0变为1,增大;对于补码的负数,符号位概念消除,在计算机中被定义为正数,又为了确保原负数小于原正数,符号位由1变为0。

        为了保证每个数之间大小关系不变,要用补码来转换成移码,用原码来转换的话,负数之间的大小关系会反转。

        数学公式:

        宏观上来看是把居中的整个数轴平移到了非负半轴上,每个数之间的大小关系不变。

        纯小数[X] 移 =1+X

        纯整数 [X] 移 = (一般标准)

        移码怎么来:移码和补码尾数相同,符号位相反(也就是补码 首位的1->0 ;0->1)

        因为移码从补码那里来,所以也能额外多表示一个数

什么是遍反射线跟踪模型 源码二进制原码,反码,码正补码?

       原码:

        正整数的负号原码:这个数的二进制,符号位为0;正整数的源码原码=补码=反码

        例1:+

       的二进制:,所以+的遍反原码: 0 =补码: 0 =反码: 0

        负整数的原码:仍是这个数的二进制,符号位为1;负整数的码正原码、反码、负号补码计算:先求原码,源码再求反码,遍反linux源码编译移植最后求补码;

        原码转换为反码:符号位不变,码正数值位按位取反;

        原码转换为补码:符号位不变,数值位按位取反,末尾在+1;

        例2:-

        的二进制:,所以-的原码:1   补码:1 反码:1

       二、二进制原码、反码、补码的加减运算及标志位

        1.补码加减基本公式

        加法:

        整数 [A]补+[B]补=[A+B]补 (mod 2n+1)

        小数 [A]补+[B]补=[A+B]补 (mod 2)jianfa

        减法:

        整数 [A-B]补=[A]补+[-B]补 (mod 2n+1)

        小数 [A-B]补=[A]补+[-B]补 (mod 2)

        2.标志位

       CF(Carry Flag) :   进为标志位。主要用来反映运算是否产生进位或借位。如果运算结果的最高位产生了一个进位或借位,那么,其值为1,否则其值为0。游戏试玩系统源码在8位二进制中,如果计算的结果超过 [0,] 的范围,就有进位,CF就被置为1,如果结果再 [-,] 范围内,就是没有进位CF被置为0。

        OF(Overflow Flag) :溢出。用于反映有符号数加减运算所得结果是否溢出。如果运算结果超过当前运算位数所能表示的范围,则称为溢出,OF的gis编程源码教程值被置为1,否则,OF的值被清为0。在8位二进制中,如果一个运算的结果最终超过 [-,] 无论是大于还是小于-就被认为是溢出,OF被置为1,如果结果在 [-,] 就认为没溢出OF被置为0。

        SF(Sign Flag) :符号标志。用来反映运算结果的符号位,它与运算结果的最高位相同。在微机系统中,有符号数采用补码表示法,意大利版传奇源码所以,SF也就反映运算结果的正负号。运算结果为正数时,SF的值为0,否则其值为1。

        ZF(Zero Flag) :零标志。用来反映运算结果是否为0。如果运算结果为0,则其值为1,否则其值为0。在判断运算结果是否为0时,可使用此标志位。

        PF(Parity Flag) :奇偶标志PF用于反映运算结果中“1”的个数的奇偶性。如果“1”的个数为偶数,则PF的值为1,否则其值为0。

        AF(Auxiliary Carry Flag) :辅助进位标志。在发生下列情况时,辅助进位标志AF的值被置为1,否则其值为0:(1)、在字操作时,发生低字节向高字节进位或借位时;(2)、在字节操作时,发生低4位向高4位进位或借位时。

原码 反码 编码 规则

       å…³äºŽåŽŸç åç è¡¥ç ,您可以借本

       ã€Šè®¡ç®—机组成原理》看看计算机中数据的表示形式。

       é¦–先更正下楼上的说法,正数的原码反码补码都相同,即的反码也为

       !!切记

       ä¸¾ä¾‹æ¥è¯´:对于正数3,其二进制形式为

       ,我们把

       æˆä¸ºæˆä¸ºçœŸå€¼,在计算机中用0或1表示正负号,那么

       åœ¨è®¡ç®—机中原码可以表示为(第一位为符号位)。反码补码不变。

       å¯¹äºŽè´Ÿæ•°,反码即按位取反,比如可表示-3,为原码,那么符号位不变,其余位按位取反即反码.

       è¡¥ç çš„存在是为了简化计算的,其符号位一起参加运算,从而对于减法可转化为加法。补码的实质就是mod2。比如我们的钟表是mod的,那么点钟我们也可以说是下午2点。获得补码的方法是“按位取反,末位加1”那么的补码便是.。。。。。。。。。。

       æœºå™¨æ•°å³æ•°å€¼åœ¨è®¡ç®—机中的表示形式。

       ä¸çŸ¥æ‚¨æ˜Žç™½äº†å—?

原码、反码、补码之间怎么快速转换,大神带你轻松学

       计算机数据存储以二进制形式进行,数据存在原码、反码、补码三种转换,它们如何转换?接下来,带你了解这些概念。

       在计算机中,数值用机器数表示,八位二进制用于表示数据,正负号由符号位表示,最高位为符号位,0表示正,1表示负。

       机器数表示方法有原码、反码、补码和移码。接下来介绍这三种表示方法的转换。

       一、原码、反码、补码的转换过程如下:

       在原码表示中,0有两种表示方式:[+0]原=,[-0]原=。反码表示中,0也有两种表示形式:[+0]反=,[-0]反=。补码表示中,0有唯一的编码:[+0]补=,[-0]补=。

       计算机采用这些编码方法,便于运算,提高运算速度。原码、反码、补码之间是层层递进的,需要掌握十进制的二进制表示、符号位表示及它们之间的关系。

       总结:正数的原码、补码、反码相同;负数的反码,符号位不变,原码数值取反;负数的补码,符号位不变,原码转换成反码,反码末位加1。

copyright © 2016 powered by 皮皮网   sitemap