本站提倡有节制游戏,合理安排游戏时间,注意劳逸结合。

【vue表格组件源码】【武媚娘传奇源码录制】【安卓freevideo源码】nccl源码编译

2025-01-01 11:07:34 来源:百科 分类:百科

1.PyTorch 分布式及集成NCCL源码分析
2.TensorRT-LLM(持续更新)

nccl源码编译

PyTorch 分布式及集成NCCL源码分析

       DDP支持混合精度训练,源码提供分布式并行计算能力。编译

       在NCCL编译分析部分,源码介绍了pytorch源码下载、编译cmake分析、源码nccl.cmake分析等。编译vue表格组件源码AMD的源码nccl(rccl)仅支持系统库的方式,一般情况下NCCL库通过lib方式集成。编译代码中的源码编译宏使用也进行了详细讨论。最后,编译提供了源码编译示例。源码

       NCCL API使用方面,编译阐述了在NCCL中存在两种场景:管理单个GPU卡或多个GPU卡,源码且每个场景都需要一个唯一的编译武媚娘传奇源码录制标识符即ncclUniqueId,用于进行进程间通信。源码关于communicator,NCCL通过comm对象来管理不同device之间的通信原语,每个GPU有一个communicator对象,而在一台机器上,gpu的id由rank表示,因此创建communicator对象时有两种方式。

       在PyTorch NCCL相关源码分析中,特别关注了c++侧的实现。

       DDP分析部分,从Python侧入手,涉及环境变量获取和DDP类分析。环境变量配置了DDP的安卓freevideo源码一些使用参数,DDP类则包含了分布式并行计算的核心功能。

       总结部分,将上述内容进行归纳整理,对分布式并行计算、NCCL和DDP的关键点进行了概括。

TensorRT-LLM(持续更新)

       TRT-LLM(NVIDIA官方支持)是一款用于在NVIDIA GPU平台上进行大模型推理部署的工具。

       其整体流程是将LLM构建为engine模型,支持多种大模型,如单机单卡、单机多卡(NCCL)、多机多卡,以及量化(8/4bit)等功能。

       TRT-LLM的武装突袭3源码runtime支持chat和stream两种模式,并支持python和cpp(可以直接使用cpp,也可以使用cpp的bybind接口)两种模式的runtime。

       构建离线模型可以通过example下的各个模型的build.py实现,而运行模型则可通过example下的run.py进行。

       TRT-LLM默认支持kv-cache,支持PagedAttention,支持flashattention,支持MHA/MQA/GQA等。

       在cpp下,TRT-LLM实现了许多llm场景下的高性能cuda kernel,并基于TensorRT的plugin机制,支持各种算子调用。

       与hugging face transformers(HF)相比,spark1.3.1源码TRT-LLM在性能上提升2~3倍左右。

       TRT-LLM易用性很强,可能与其LLM模型结构比较固定有关。

       TRT-LLM的weight_only模式仅仅压缩模型体积,计算时依旧是dequant到input.dtype做计算。

       TRT-LLM的量化:W4A(表示weight为4bit,输入数据即activation为fp)。

       LLM模型推理,性能损耗大头在data 搬移,即memory bound,compute bound占比较少。

       TRT-LLM运行时内存可以通过一下参数调整,使用适合当前业务模型的参数即可。

       TRT-LLM对于Batch Manager提供了.a文件,用于支持in-flight batching of requests,来较小队列中的数据排队时间,提高GPU利用率。

       当前支持(0.7.1)的模型如下:

       tensorrt llm需要进行源码编译安装,官方提供的方式为通过docker进行安装。

       docker方式编译可以参考官方文档,此处做进一步说明。使用docker方式,会将依赖的各种编译工具和sdk都下载好,后面会详细分析一下docker的编译过程。

       编译有2种包,一种是仅包含cpp的代码包,一种是cpp+python的wheel包。

       docker的整个编译过程从如下命令开始:调用make,makefile在 docker/Makefile 下面,里面主要是调用了docker命令来进行构建。

       后续非docker方式编译llm,也是基于上述docker编译。

       一些小技巧:在编译llm过程中,会通过pip install一些python包,llm脚本中默认使用了NVIDIA的源,我们可以替换为国内的源,速度快一些。

       整个过程就是将docker file中的过程拆解出来,直接执行,不通过docker来执行。

       编译好的文件位于:build/tensorrt_llm-0.5.0-py3-none-any.whl。

       默认编译选项下的一些编译配置信息如下:

       以官方样例bloom为例:bloom example

       核心在于:编译时使用的环境信息和运行时的环境信息要一致,如:python版本,cuda/cudnn/nccl/tensorrt等。

       环境安装后以后,参考官方bloom样例,进行模型下载,样例执行即可。

       最终生成的engine模型:

       以chatglm2-6b模型为基础,进行lora微调后,对模型进行参数合并后,可以使用tensortrt-llm的example进行部署,合并后的模型的推理结果和合并前的模型的推理结果一致。

       lora的源码不在赘述,主要看一下lora模型参数是如何合并到base model中的:

       lora模型如下:

       base模型如下:

       模型构建是指将python模型构建为tensort的engine格式的模型。

       整体流程如下:

       整体流程可以总结为:

       可以看出,原理上和模型转换并没有区别,只是实现方式有差异而已。

       pytorch模型参数如何加载在tensortrt-llm中?关于量化参数加载

       1. 先提取fp格式的参数

       2. 调用cpp的实现进行参数量化

       整体而言,模型参数加载的关键在于:算子weight一一对应,拷贝复制。

       每种模型,都需要搭建和pytorch严格一致的模型架构,并将算子weight严格对应的加载到tensortrt-llm模型中

       即:关键点在于:熟悉原始pytorch模型结构和参数保存方式,熟悉tensorrt-llm的模型结构和参数设定方法。

       模型构建成功后,有两个文件:config.json文件推理时会用到,主要内容如下:模型参数信息和plugin信息。

       在模型构建好后,就可以做模型推理,推理流程如下:

       TRT-LLM Python Runtime分析

       1. load_tokenizer

       2. parse_input

       基于 tokenizer 对输入的text做分词,得到分词的id

       3. runner选择&模型加载

       4.推理

       5. 内存管理

       TRT-layer实现举例

       (1)对tensorrt的接口调用:以cast算子为例:functional.py是对TensorRT python API接口的调用

       调用tensorrt接口完成一次推理计算

       (2)TRT-LLM python侧对cpp侧的调用

       调到cpp侧后,就会调用cpp侧的cuda kernel

       trtllm更新快,用了一些高版本的python特性,新的trtllm版本在python3.8上,不一定能跑起来

相关推荐
一周热点